Skip to main content
Log in

Nisin production in a chitin-including continuous fermentation system with Lactococcus lactis displaying a cell wall chitin-binding domain

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The limiting factors in the continuous production of nisin are high amount of biomass loss and low dilution rate application. In this study, a chitin-including continuous nisin fermentation system (CICON-FER) was constructed for high volumetric nisin production using nisin producer L. lactis displaying cell wall chitin-binding domain (ChBD) together with chitin in the reactor. In this respect, the highest binding conditions of relevant L. lactis cells to chitin were determined. Then the chitin flakes carrying nisin-producing L. lactis cells were used within the CICON-FER system at different dilution rates (0.1–0.9 h−1) and initial glucose concentrations (20–60 g l−1). The results revealed that the pH 7 conditions and the use of 100 mM sodium phosphate buffer with 0.1 % Tween 20 and Triton X-100 significantly increased the binding capacity of ChBD displaying L. lactis cells to chitin. The constructed CICON-FER system maintained the presence of the ChBD surface displaying L. lactis cells in the reactor system until 0.9 h−1 dilution rate that resulted in a considerably high level of volumetric nisin production and productivity (10,500 IU ml−1 and 9,450 IU ml−1 h−1, respectively) with the combination of a 0.9-h−1 dilution rate and a 40-g l−1 initial glucose concentration. In conclusion, an innovative nisin fermentation system that yielded the highest nisin production thus far and that was feasible for industrial application was created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. de Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199

    Article  PubMed  Google Scholar 

  2. Nes IF, Yoon S, Diep DB (2007) Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria. Food Sci Biotechnol 16(5):675–690

    CAS  Google Scholar 

  3. O’ Shea EF, Cotter PD, Ross RP, Hill C (2013) Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Curr Opin Biotechnol 24(2):130–134

    Article  PubMed  Google Scholar 

  4. Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin nisin. Antonie Van Leeuwenhoek 69:193–202

    Article  CAS  PubMed  Google Scholar 

  5. Takala TM, Saris PEJ (2007) Nisin: past, present and future. In: Riley MA, Gillor O (ed) Research and applications of bacteriocins. Horizon Bioscience. pp 181–213

  6. Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf life extension. Int Dairy J 16:1058–1071

    Article  CAS  Google Scholar 

  7. de Vuyst L, Vandamme EJ (1992) Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J General Microbiol 138:571–578

    Article  Google Scholar 

  8. Hull JSV, Gibbons WR (1997) Neutralization/recovery of lactic acid from Lactococcus lactis: effects on biomass, lactic acid and nisin production. World J Microbiol Biotechnol 13:527–532

    Article  Google Scholar 

  9. Amiali MN, Lacroix C, Simard RE (1998) High nisin Z production by Lactococcus lactis UL719 in whey permeate with aeration. World J Microbiol Biotechnol 14:887–894

    Article  CAS  Google Scholar 

  10. Guerra NP, Pastrana L (2001) Enhanced nisin and pediocin production on whey supplemented with different nitrogen sources. Biotechnol Lett 23:609–612

    Article  CAS  Google Scholar 

  11. Pongtharangkul T, Demirci A (2006) Evaluation of culture medium for nisin production in a repeated-batch biofilm reactor. Biotechnol Prog 22:217–224

    Article  CAS  PubMed  Google Scholar 

  12. Sonomoto K, Chinachoti N, Endo N, Ishizaki A (2000) Biosynthetic production of nisin Z by immobilized Lactococcus lactis IO-1. J Mol Cat B: Enzymatic 10:325–334

    Article  CAS  Google Scholar 

  13. Scannell AGM, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK (2000) Continuous production of lacticin 3147 and nisin using cells immobilized in calcium alginate. J Appl Microbiol 89:573–579

    Article  CAS  PubMed  Google Scholar 

  14. Desjardins P, Meghrous J, Lacroix C (2001) Effect of aeration and dilution rate on nisin Z production during continuous fermentation with free and immobilized Lactococcus lactis UL719 in supplemented whey permeate. Int Dairy J 11:943–951

    Article  CAS  Google Scholar 

  15. Pongtharangkul T, Demirci A (2006) Effects of pH profiles on nisin production in biofilm reactor. Appl Microbiol Biotechnol 71:804–811

    Article  CAS  PubMed  Google Scholar 

  16. Pontharangkul T, Demirci A (2006) Effects of fed-batch fermentation and pH profiles on nisin production in suspended cell and biofilm reactors. Appl Microbiol Biotechnol 73:73–79

    Article  Google Scholar 

  17. Wardani AH, Egawa S, Nagahisa K, Shimizu H, Shioya S (2006) Computational prediction of impact of rerouting the carbon flux in metabolic pathway on cell growth and nisin production by Lactococcus lactis. Biochem Eng J 28:220–230

    Article  CAS  Google Scholar 

  18. Şimşek Ö, Çon AH, Akkoç N, Saris PE, Akçelik M (2009) Influence of growth conditions on the nisin production of bioengineered Lactococcus lactis strains. J Ind Microbiol Biotechnol 36(4):481–490

    Article  PubMed  Google Scholar 

  19. Şimşek Ö, Akkoç N, Çon AH, Özçelik F, Saris PE, Akçelik M (2009) Continuous nisin production with bioengineered strains. J Ind Microbiol Biotechnol 36(6):863–871

    Article  PubMed  Google Scholar 

  20. Papagianni M, Avramidis N (2012) Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions. Enzyme Microb Technol 51(3):125–130

    Article  CAS  PubMed  Google Scholar 

  21. Şimşek Ö, Sabanoğlu S, Çon AH, Karasu N, Akçelik M, Saris PEJ (2013) Immobilization of nisin producer Lactococcus lactis strains to chitin with surface displayed chitin binding domain. Appl Microbiol Biotechnol 97(10):4577–4587

    Article  PubMed  Google Scholar 

  22. Wang JY, Chao YP (2006) Immobilization of cells with surface displayed chitin binding domain. Appl Environ Microbiol 72:927–931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tramer J, Fowler GG (1964) Estimation of nisin in foods. J Sci Food Agri 15:522–528

    Article  CAS  Google Scholar 

  24. Hashimoto M, Ikegami T, Seino S, Obuchi N, Fukada H, Sugiyama J, Shirakawa M, Watanabe T (2000) Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J Bacteriol 182:3045–3054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ikegami T, Okada T, Hashimoto M, Seino S, Watanabe T, Shirakawa W (2000) Solution structure of the chitin binding domain of Bacillus circulans WL-12 chitinase A1. J Biol Chem 275:13654–13661

    Article  CAS  PubMed  Google Scholar 

  26. Panoff JM, Legrand S, Thammavongs B, Boutibonnes P (1994) The cold shock response in Lactococcus lactis subsp lactis. Curr Microbiol 29:213–216

    Article  Google Scholar 

  27. Meghrous J, Huot E, Quittelier M, Petitdemange H (1992) Regulation of nisin biosynthesis by continuous cultures and by resting cells of Lactococcus lactis subsp. lactis. Res Microbiol 143:879–890

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Chung KY, Yang ST, Yousef AE (2005) Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem 40:13–24

    Article  CAS  Google Scholar 

  29. Bertrand N, Fliss I, Lacroix C (2001) High nisin-Z production during repeated-cycle batch cultures in supplemented whey permeate using immobilized Lactococcus lactis UL719. Int Dairy J 1:953–960

    Article  Google Scholar 

  30. Şimşek Ö, Saris PE (2009) Cycle changing the medium results in increased nisin productivity per cell in Lactococcus lactis. Biotech Lett 31(3):415–421

    Article  Google Scholar 

  31. Qiao M, Immonen T, Koponen O, Saris PEJ (1995) The cellular location and effect on nisin immunity of the NisI protein from Lactococcus lactis N8 expressed in Escherichia coli and L. lactis. FEMS Microbiol Lett 131:75–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technological Council of Turkey (TUBİTAK) with the project number 1090 589.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Şimşek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şimşek, Ö. Nisin production in a chitin-including continuous fermentation system with Lactococcus lactis displaying a cell wall chitin-binding domain. J Ind Microbiol Biotechnol 41, 535–543 (2014). https://doi.org/10.1007/s10295-013-1388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1388-x

Keywords

Navigation