Skip to main content

Regulation of Secondary Metabolites Through Signaling Molecules in Streptomyces

  • Chapter
  • First Online:
Natural Products from Actinomycetes

Abstract

The bacterial genus Streptomyces is well characterized by an ability to produce a wide variety of secondary metabolites including antibiotics, anticancer agents, antiviral drugs, herbicides, pesticides, insecticides, and immunosuppressants. Their biosynthesis is strictly controlled by small diffusible signaling molecules that constitute a signaling molecule/receptor regulatory systems. These signaling molecule/receptor regulatory systems are extensively studied in various Streptomyces species to understand the regulatory function for secondary metabolite production. This chapter focuses on the Streptomyces signaling molecules in view of structural classification, distribution, and biosynthesis. In addition, this chapter reviews the signaling molecule-dependent regulatory systems including the receptor, the target activator, and the pseudo-receptor that are responsible for controlling secondary metabolite production in Streptomyces. Application for activation of silent secondary metabolites by manipulation of regulatory systems is also briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed Y, Rebets Y, Tokovenko B, Brotz E, Luzhetskyy A (2017) Identification of butenolide regulatory system controlling secondary metabolism in Streptomyces albus J1074. Sci Rep 7:9784

    Article  PubMed  PubMed Central  Google Scholar 

  • Aigle B, Pang X, Decaris B, Leblond P (2005) Involvement of AlpV, a new member of the Streptomyces antibiotic regulatory protein family, in regulation of the duplicated type II polyketide synthase alp gene cluster in Streptomyces ambofaciens. J Bacteriol 187:2491–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajithkumar V, Karuppasamy K, Prasad R (2013) Regulation of daunorubicin biosynthesis in Streptomyces peucetius—feed forward and feedback transcriptional control. J Basic Microbiol 2013(53):636–644

    Google Scholar 

  • Arakawa K (2014) Genetic and biochemical analysis of the antibiotic biosynthetic gene clusters on the Streptomyces linear plasmid. Biosci Biotechnol Biochem 78:183–189

    Article  CAS  PubMed  Google Scholar 

  • Arakawa K (2018) Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp. Antonie Van Leeuwenhoek 111:743–751

    Article  CAS  PubMed  Google Scholar 

  • Arakawa K, Mochizuki S, Yamada K, Noma T, Kinashi H (2007) γ-Butyrolactone autoregulator-receptor system involved in lankacidin and lankamycin production and morphological differentiation in Streptomyces rochei. Microbiology 153:1817–1827

    Article  CAS  PubMed  Google Scholar 

  • Arakawa K, Tsuda N, Taniguchi A, Kinashi H (2012) The butenolide signaling molecules SRB1 and SRB2 induce lankacidin and lankamycin production in Streptomyces rochei. ChemBioChem 13:1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Arias P, Fernandez-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroonsri A, Kitani S, Hashimoto J, Kosone I, Izumikawa M, Komatsu M, Fujita N, Takahashi Y, Shin-ya K, Ikeda H, Nihira T (2012) Pleiotropic control of secondary metabolism and morphological development by KsbC, a butyrolactone autoregulator receptor homologue in Kitasatospora setae. Appl Environ Microbiol 78:8015–8024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bate N, Butler AR, Gandecha AR, Cundliffe E (1999) Multiple regulatory genes in the tylosin biosynthetic cluster of Streptomyces fradiae. Chem Biol 6:617–624

    Article  CAS  PubMed  Google Scholar 

  • Bate N, Stratigopoulos G, Cundliffe E (2002) Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis. Mol Microbiol 43:449–458

    Article  CAS  PubMed  Google Scholar 

  • Biarnes-Carrera M, Breitling R, Takano E (2015) Butyrolactone signalling circuits for synthetic biology. Curr Opin Chem Biol 28:91–98

    Article  CAS  PubMed  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    Article  CAS  PubMed  Google Scholar 

  • Bunet R, Mendes MV, Rouhier N, Pang X, Hotel L, Leblond P, Aigle B (2008) Regulation of the synthesis of the angucyclinone antibiotic alpomycin in Streptomyces ambofaciens by the autoregulator receptor AlpZ and its specific ligand. J Bacteriol 190:3293–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunet R, Song L, Mendes MV, Corre C, Hotel L, Rouhier N, Framboisier X, Leblond P, Challis GL, Aigle B (2011) Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of kinamycins. J Bacteriol 193:1142–1153

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wendt-Pienkowski E, Shen B (2008) Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 190:5587–5596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YW, Liu XC, Lv FX, Li P (2019) Characterization of three regulatory genes involved in enduracidin biosynthesis and improvement of enduracidin production in Streptomyces fungicidicus. J Appl Microbiol 127:1698–1705

    Article  CAS  PubMed  Google Scholar 

  • Corre C, Song L, O’Rourke S, Chater KF, Challis GL (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci U S A 105:17510–17515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cundliffe E (2008) Control of tylosin biosynthesis in Streptomyces fradiae. J Microbiol Biotechnol 18:1485–1491

    CAS  PubMed  Google Scholar 

  • Du D, Katsuyama Y, Onaka H, Fujie M, Satoh N, Shin-Ya K, Ohnishi Y (2016) Production of a novel amide-containing polyene by activating a cryptic biosynthetic gene cluster in Streptomyces sp. MSC090213JE08. Chembiochem 17:1464–1471

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Moreno MA, Caballero JL, Hopwood DA, Malpartida F (1991) The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66:769–780

    Article  CAS  PubMed  Google Scholar 

  • Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E (2010) Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156:2343–2353

    Article  CAS  PubMed  Google Scholar 

  • Handel F, Kulik A, Mast Y (2020) Investigation of the autoregulator-receptor system in the pristinamycin producer Streptomyces pristinaespiralis. Front Microbiol 11:580990

    Article  PubMed  PubMed Central  Google Scholar 

  • Hara O, Beppu T (1982) Mutants blocked in streptomycin production in Streptomyces griseus—the role of A-factor. J Antibiot 35:349–358

    Article  CAS  Google Scholar 

  • Higashi T, Iwasaki Y, Ohnishi Y, Horinouchi S (2007) A-Factor and phosphate depletion signals are transmitted to the grixazone biosynthesis genes via the pathway-specific transcriptional activator GriR. J Bacteriol 189:3515–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horinouchi S, Beppu T (2007) Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Prod Jpn Acad Ser B Phys Biol Sci 83:277–295

    Article  CAS  Google Scholar 

  • Hsiao NH, Nakayama S, Merlo ME, de Vries M, Bunet R, Kitani S, Nihira T, Takano E (2009) Analysis of two additional signaling molecules in Streptomyces coelicolor and the development of a butyrolactone-specific reporter system. Chem Biol 16:951–960

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi R, Akashi T, Kamitani Y, Sy A, Wangchaisoonthorn U, Nihira T, Yamada Y (2000) Identification of an AfsA homologue (BarX) from Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol Microbiol 36:302–313

    Article  Google Scholar 

  • Khokhlov AS, Tovarova II, Borisova LN, Pliner SA, Shevchenko LN, Kornitskaia EI, Ivkina NS, Rapoport IA (1967) The A-factor, responsible for streptomycin biosynthesis by mutant strains of Actinomyces streptomycini. Dokl Akad Nauk SSSR 177:232–235

    CAS  PubMed  Google Scholar 

  • Kinoshita H, Ipposhi H, Okamoto S, Nakano H, Nihira T, Yamada Y (1997) Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J Bacteriol 179:6986–6993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitani S, Yamada Y, Nihira T (2001) Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a Novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. J Bacteriol 183:4357–4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, Uchida M, Nagamitsu T, Omura S, Ikeda H, Nihira T (2011) Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci U S A 108:16410–16415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo K, Higuchi Y, Sakuda S, Nihira T, Yamada Y (1989) New virginiae butanolides from Streptomyces virginiae. J Antibiot 42:1873–1876

    Article  CAS  Google Scholar 

  • Kong D, Wang X, Nie J, Niu G (2019) Regulation of antibiotic production by signaling molecules in Streptomyces. Front Microbiol 10:2927

    Article  PubMed  PubMed Central  Google Scholar 

  • König CC, Scherlach K, Schroeckh V, Horn F, Nietzsche S, Brakhage AA, Hertweck C (2013) Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. ChemBioChem 14:938–942

    Article  CAS  PubMed  Google Scholar 

  • Koomsiri W, Inahashi Y, Leetanasaksakul K, Shiomi K, Takahashi YK, O Mura S, Samborskyy M, Leadlay PF, Wattana-Amorn P, Thamchaipenet A, Nakashima T (2019) Sarpeptins A and B, lipopeptides produced by Streptomyces sp. KO-7888 overexpressing a specific SARP regulator. J Nat Prod 82:2144–2151

    Article  CAS  PubMed  Google Scholar 

  • Krause J, Handayani I, Blin K, Kulik A, Mast Y (2020) Disclosing the potential of the SARP-type regulator PapR2 for the activation of antibiotic gene clusters in Streptomycetes. Front Microbiol 11:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunitake H, Hiramatsu T, Kinashi H, Arakawa K (2015) Isolation and biosynthesis of an azoxyalkene compound produced by a multiple gene disruptant of Streptomyces rochei. ChemBioChem 16:2237–2243

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang J, Li S, Ji J, Wang W, Yang K (2015) ScbR- and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor. Sci Rep 5:14831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Mol Biol Rev 77:112–143

    Article  CAS  Google Scholar 

  • Madduri K, Hutchinson CR (1995) Functional characterization and transcriptional analysis of a gene cluster governing early and late steps in daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol 177:3879–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin J, Liras P (2020) The balance metabolism safety net: integration of stress signals by interacting transcriptional factors in Streptomyces and related actinobacteria. Front Microbiol 10:3120

    Article  PubMed  PubMed Central  Google Scholar 

  • Mast Y, Guezguez J, Handel F, Schinko E (2015) A complex signaling cascade governs pristinamycin biosynthesis in Streptomyces pristinaespiralis. Appl Environ Microbiol 81:6621–6636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matselyukh B, Mohammadipanah F, Laatsch H, Rohr J, Efremenkova O, Khilya V (2015) N-methylphenylalanyl-dehydrobutyrine diketopiperazine, anA-factor mimic that restores antibiotic biosynthesis and morphogenesis in Streptomyces globisporus 1912-B2 and Streptomyces griseus 1439. J Antibiot 68:9–14

    Article  CAS  Google Scholar 

  • Matsuno K, Yamada Y, Lee CK, Nihira T (2004) Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae. Arch Microbiol 181:52–59

    Article  CAS  PubMed  Google Scholar 

  • Mingyar E, Feckova L, Novakova R, Bekeova C, Kormanec J (2015) A gamma-butyrolactone autoregulator-receptor system involved in the regulation of auricin production in Streptomyces aureofaciens CCM 3239. Appl Microbiol Biotechnol 99:309–325

    Article  CAS  PubMed  Google Scholar 

  • Misaki Y, Yamamoto S, Suzuki T, Iwakuni M, Sasaki H, Takahashi Y, Inada K, Kinashi H, Arakawa K (2020) SrrB, a pseudo-receptor protein, acts as a negative regulator for lankacidin and lankamycin production in Streptomyces rochei. Front Microbiol 11:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, Schroeckh V, Brakhage AA (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TB, Kitani S, Shimma S, Nihira T (2018) Butenolides from Streptomyces albus J1074 act as external signals to stimulate avermectin production in Streptomyces avermitilis. Appl Environ Microbiol 84:e2791–e2717

    Google Scholar 

  • Niu G, Chater KF, Tian Y, Zhang J, Tan H (2016) Specialized metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev 40:554–573

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin production in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34:102–111

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Yamazaki H, Kato JY, Tomono A, Horinouchi S (2005) AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69:431–439

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Nakamura K, Nihira T, Yamada Y (1995) Virginiae butanolide binding protein from Streptomyces virginiae. Evidence that VbrA is not the virginiae butanolide binding protein and reidentification of the true binding protein. J Biol Chem 270:12319–12326

    Article  CAS  PubMed  Google Scholar 

  • Olano C, Lombó F, Méndez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292

    Article  CAS  PubMed  Google Scholar 

  • Onaka H, Ando N, Nihira T, Yamada Y, Beppu T, Horinouchi S (1995) Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacteriol 177:6083–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Llarena FJ, Liras P, Rodríguez-García A, Martín JF (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both beta-lactam compounds. J Bacteriol 179:2053–2059

    Article  PubMed  PubMed Central  Google Scholar 

  • Recio E, Colinas A, Rumbero A, Aparicio JF, Martín JF (2004) PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem 279:41586–41593

    Article  CAS  PubMed  Google Scholar 

  • Rehakova A, Novakova R, Feckova L, Mingyar E, Kormanec J (2013) A gene determining a new member of the SARP family contributes to transcription of genes for the synthesis of the angucycline polyketide auricin in Streptomyces aureofaciens CCM 3239. FEMS Microbiol Lett 346:45–55

    Article  CAS  PubMed  Google Scholar 

  • Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13:509–523

    Article  CAS  PubMed  Google Scholar 

  • Salehi-Najafabadi Z, Barreiro C, Rodríguez-García A, Cruz A, López GE, Martín JF (2014) The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Appl Microbiol Biotechnol 98:4919–4936

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Nihira T, Sakuda S, Yanagimoto M, Yamada Y (1989) Isolation and structure of a new butyrolactone autoregulator from Streptomyces sp. FRI-5. J Ferment Bioeng 68:170–173

    Article  CAS  Google Scholar 

  • Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106:14558–14563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon PJ, Busarow SB, Hutchinson CR (2002) Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460

    Article  CAS  PubMed  Google Scholar 

  • Sidda JD, Poon V, Song L, Wang W, Yang K, Corre C (2016) Overproduction and identification of butyrolactones SCB1–8 in the antibiotic production superhost Streptomyces M1152. Org Biomol Chem 14:6390–6393

    Article  CAS  PubMed  Google Scholar 

  • Stratigopoulos G, Cundliffe E (2002) Expression analysis of the tylosin-biosynthetic gene cluster: pivotal regulatory role of the tylQ product. Chem Biol 9:71–78

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Mochizuki S, Yamamoto S, Arakawa K, Kinashi H (2010) Regulation of lankamycin biosynthesis in Streptomyces rochei by two SARP genes, srrY and srrZ. Biosci Biotechnol Biochem 74:819–827

    Article  CAS  PubMed  Google Scholar 

  • Takano E (2006) γ-Butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MJ (1992) Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6:2797–2804

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Chakaraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56:465–479

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Takano Y, Ohnishi Y, Horinouchi S (2007) AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J Mol Biol 369:322–333

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Grimm A, Zhang YX, Hutchinson CR (1996) Purification and characterization of the DNA-binding protein DnrI, a transcriptional factor of daunorubicin biosynthesis in Streptomyces peucetius. Mol Microbiol 22:801–813

    Article  CAS  PubMed  Google Scholar 

  • Teshima A, Hadae N, Tsuda N, Arakawa K (2020) Functional analysis of P450 monooxygenase SrrO in the biosynthesis of butenolide-type signaling molecules in Streptomyces rochei. Biomolecules 10:1237

    Article  CAS  PubMed Central  Google Scholar 

  • Thao NB, Kitani S, Nitta H, Tomioka T, Nihira T (2017) Discovering potential Streptomyces hormone producers by using disruptants of essential biosynthetic genes as indicator strains. J Antibiot 70:1004–1008

    Article  CAS  Google Scholar 

  • Vicente CM, Girardet JM, Hôtel L, Aigle B (2020) Molecular dynamics to elucidate the DNA-Binding activity of AlpZ, a member of the gamma-butyrolactone receptor family in Streptomyces ambofaciens. Front Microbiol 11:1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Vining LC (2003) Control of growth, secondary metabolism and sporulation in Streptomyces venezuelae ISP5230 by jadW1, a member of the afsA family of gamma-butyrolactone regulatory genes. Microbiology 149:1991–2004

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tian X, Wang J, Yang H, Fan K, Xu G, Yang K, Tan H (2009) Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci U S A 106:8617–8622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JB, Zhang F, Pu JY, Zhao J, Zhao QF, Tang GL (2014a) Characterization of AvaR1, an autoregulator receptor that negatively controls avermectins production in a high avermectin-producing strain. Biotechnol Lett 36:813–819

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Ji J, Wang J, Li S, Pan G, Fan K, Yang K (2014b) Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. Proc Natl Acad Sci U S A 111:5688–5693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhang J, Liu X, Li D, Li Y, Tian Y, Tan H (2018) Identification of a butenolide signaling system that regulates nikkomycin biosynthesis in Streptomyces. J Biol Chem 293:20029–20040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wietzorrek A, Bibb MJ (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Yang S (2019) Regulatory and evolutionary roles of pseudo γ-butyrolactone receptors in antibiotic biosynthesis and resistance. Appl Microbiol Biotechnol 103:9373–9378

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Wang J, Wang L, Tian X, Yang H, Fan K, Yang K, Tan H (2010) “Pseudo” γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y (1995) Butyrolactone autoregulators, inducers of secondary metabolites, in Streptomyces. Actinomycetol 9:57–65

    Article  Google Scholar 

  • Yamamoto S, He Y, Arakawa K, Kinashi H (2008) γ-Butyrolactone-dependent expression of the SARP gene srrY plays a central role in the regulatory cascade leading to lankacidin and lankamycin production in Streptomyces rochei. J Bacteriol 190:1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Han L, Vining LC (1995) Regulation of jadomycin B production in Streptomyces venezuelae ISP5230: involvement of a repressor gene, jadR2. J Bacteriol 177:6111–6117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Reichheld SE, Savchenko A, Parkinson J, Davidson AR (2010) A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. J Mol Biol 400:847–864

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Du A, Liu T, Deng Z, He X (2012) The biosynthesis of the polyether antibiotic nanchangmycin is controlled by two pathway-specific transcriptional activators. Arch Microbiol 194:415–426

    Article  CAS  PubMed  Google Scholar 

  • Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10:625–633

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Bhukya H, Malet N, Harrison PJ, Rea D, Belousoff MJ, Venugopal H, Sydor PK, Styles KM, Song L, Cryle MJ, Alkhalaf LM, Fülöp V, Challis GL, Corre C (2021) Molecular basis for control of antibiotic production by a bacterial hormone. Nature 590:463–467

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Sun D, Liu W, Chen Z, Li J, Wen Y (2016) AvaR2, a pseudo γ-butyrolactone receptor homologue from Streptomyces avermitilis, is a pleiotropic repressor of avermectin and avenolide biosynthesis and cell growth. Mol Microbiol 102:562–578

    Article  CAS  PubMed  Google Scholar 

  • Zou Z, Du D, Zhang Y, Zhang J, Niu G, Tan H (2014) A γ-butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol Microbiol 94:490–505

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Arakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arakawa, K., Suzuki, T. (2022). Regulation of Secondary Metabolites Through Signaling Molecules in Streptomyces. In: Rai, R.V., Bai, J.A. (eds) Natural Products from Actinomycetes. Springer, Singapore. https://doi.org/10.1007/978-981-16-6132-7_7

Download citation

Publish with us

Policies and ethics