Skip to main content
Log in

Methods for the genetic manipulation of Nonomuraea sp. ATCC 39727

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Nonomuraea sp. ATCC 39727 belongs to the Streptosporangiaceae family of filamentous actinomycetes. This microorganism produces the teicoplanin-like glycopeptide A40926, which is the starting material for the synthesis of the second-generation glycopeptide dalbavancin. Notwithstanding the strain’s pharmaceutical relevance, the lack or poor efficiency of genetic tools to manipulate Nonomuraea sp. ATCC 39727 has hampered strain and product improvement. Here we report the development of gene transfer systems based on protoplast transformation and intergeneric conjugation from Escherichia coli. Efficiency of transformation and conjugation, followed by site specific or homologous recombination with the Nonomuraea sp. genome, were determined using the integrative plasmid pSET152 (5.7 kb), and the Supercos1 derivative cosmid A40ΔY (30 kb). To our knowledge, this is the first report of the transformation of protoplasts of Nonomuraea sp. ATCC 39727, even though the improved procedure for intergeneric conjugation makes it the method of choice for introducing large segments of DNA into Nonomuraea sp. ATCC 39727.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2001) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek 79:399–405

    CAS  PubMed  Google Scholar 

  2. Baltz RH (1998) Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol 6:76–83

    Article  CAS  PubMed  Google Scholar 

  3. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces Genetics. The John Innes Foundation, Norwich

    Google Scholar 

  4. Stegmann E, Pelzer S, Wilken K, Wohlleben W (2001) Development of three different gene cloning systems for genetic investigation of the new species Amycolatopsis japonicum MG417-CF17, the ethylenediaminedisuccinic acid producer. J Biotechnol 92:195–204

    Article  CAS  PubMed  Google Scholar 

  5. Matsushima P, McHenney MA, Baltz RH (1987) Efficient transformation of Amycolatopsis orientalis (Nocardia orientalis) protoplasts by Streptomyces plasmids. J Bacteriol 169:2298–2300

    CAS  PubMed  Google Scholar 

  6. Rajnisz A, Solecka J, Kurzatkowski W (2005) Properties of Saccharopolyspora erythraea strains after protoplast regeneration. Folia Microbiol (Praha) 50:13–18

    Article  CAS  Google Scholar 

  7. Palleroni NJ (1983) Genetic recombination in Actinoplanes brasiliensis by protoplast fusion. Appl Environ Microbiol 45:1865–1869

    CAS  PubMed  Google Scholar 

  8. Marcone GL, Carrano L, Marinelli F, Beltrametti F (2010) Protoplast preparation and reversion to the normal filamentous growth in antibiotic-producing uncommon actinomycetes. J Antibiot (Tokyo) 63:83–88

    CAS  Google Scholar 

  9. Beltrametti F, Barucco D, Rossi R, Selva E, Marinelli F (2007) Protoplast fusion and gene recombination in the uncommon actinomycete Planobispora rosea producing GE2270. J Antibiot (Tokyo) 60:447–454

    CAS  Google Scholar 

  10. Ha HS, Hwang YI, Choi SU (2008) Application of conjugation using phiC31 att/int system for Actinoplanes teichomyceticus, a producer of teicoplanin. Biotechnol Lett 30:1233–1238

    Article  CAS  PubMed  Google Scholar 

  11. Goldstein BP, Selva E, Gastaldo L, Berti M, Pallanza R, Ripamonti F, Ferrari P, Denaro M, Arioli V, Cassani G (1987) A40926, a new glycopeptide antibiotic with anti-Neisseria activity. Antimicrob Agents Chemother 31:1961–1966

    CAS  PubMed  Google Scholar 

  12. Cornaglia G, Rossolini GM (2009) Forthcoming therapeutic perspectives for infections due to multidrug-resistant Gram-positive pathogens. Clin Microbiol Infect 15:218–223

    Article  CAS  PubMed  Google Scholar 

  13. Simon B, Priefer UB, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791

    Article  CAS  Google Scholar 

  14. MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  CAS  PubMed  Google Scholar 

  15. Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  PubMed  Google Scholar 

  16. Marcone GL, Beltrametti F, Binda E, Carrano L, Foulston L, Hesketh A, Bibb M, Marinelli F (2010) Novel mechanism of glycopeptide resistance in the A40926 producer Nonomuraea sp. ATCC 39727. Antimicrob Agents Chemother 54:2465–2472

    Article  CAS  PubMed  Google Scholar 

  17. Paget MS, Leibovitz E, Buttner MJ (1999) A putative two-component signal transduction system regulates sigmaE, a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2). Mol Microbiol 33:97–107

    Article  CAS  PubMed  Google Scholar 

  18. Beltrametti F, Jovetic S, Feroggio M, Gastaldo L, Selva E, Marinelli F (2004) Valine influences production and complex composition of glycopeptide antibiotic A40926 in fermentations of Nonomuraea sp. ATCC 39727. J Antibiot (Tokyo) 57:37–44

    CAS  Google Scholar 

  19. Foulston LC, Bibb MJ (2010) Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc Natl Acad Sci USA (in press)

  20. Stinchi S, Azimonti S, Donadio S, Sosio M (2003) A gene transfer system for the glycopeptide producer Nonomuraea sp. ATCC 39727. FEMS Microbiol Lett 225:53–57

    Article  CAS  PubMed  Google Scholar 

  21. Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC (2000) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 2004(33):95–103

    Google Scholar 

  22. Jin Z, Jin X, Jin Q (2010) Conjugal transferring of resistance gene ptr for improvement of pristinamycin-producing Streptomyces pristinaespiralis. Appl Biochem Biotechnol 160:1853–1864

    Article  CAS  PubMed  Google Scholar 

  23. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FAR 2007–2008–2009 to F.M. and by MIUR fellowship to G.L.M. We thank also the support from Consorzio Interuniversitario per le Biotecnologie (CIB) and Progetto Cariplo: Promuovere Capitale Umano d’Eccellenza, for the grants to G.L.M. and E.B. L.F. and M.B. were funded by grants from the Biotechnology and Biological Sciences Research Council, U.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia Letizia Marcone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcone, G.L., Foulston, L., Binda, E. et al. Methods for the genetic manipulation of Nonomuraea sp. ATCC 39727. J Ind Microbiol Biotechnol 37, 1097–1103 (2010). https://doi.org/10.1007/s10295-010-0807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0807-5

Keywords

Navigation