Skip to main content
Log in

Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Acetoin, a major extracellular catabolic product of Bacillus subtilis cultured on glucose, is widely used to add flavor to food and also serves as a precursor for chemical synthesis. The biosynthesis of acetoin from pyruvate requires the enzymes α-acetolactate synthase (ALS) and α-acetolactate decarboxylase (ALDC), both of which are encoded by the alsSD operon. The transcriptional regulator ALsR is essential for the expression of alsSD. Here we focused on enhancing the production of acetoin by B. subtilis using different promoters to express ALsR. The expression of reporter genes was much higher under the control of the HpaII promoter than under control of the P bdhA promoter. Although the HpaII promoter highly enhanced transcription of the alsSD operon through overexpression of ALsR, the production of acetoin was not significantly increased. In contrast, moderate enhancement of ALsR expression using the P bdhA promoter significantly improved acetoin production. Compared with the wild-type, the enzyme activities of ALS and ALDC in B. subtilis harboring P bdhA were increased by approximately twofold, and the molar yield of acetoin from glucose was improved by 62.9 % in shake flask fermentation. In a 5-L fermentor, the engineered B. subtilis ultimately yielded 41.5 g/L of acetoin. Based on these results, we conclude that enhanced expression of ALDC and ALS by moderately elevated expression of the transcriptional regulator ALsR could increase acetoin production in recombinant B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALDC:

α-Acetolactate decarboxylase

ALS:

α-Acetolactate synthase

AlsR:

Transcriptional regulator

AR/BDH:

Acetoin reductase/2,3-butanediol dehydrogenase

CAT:

Chloramphenicol acetyltransferase

GFP:

Green fluorescent protein

GRAS:

Generally recognized as safe

References

  1. Atsumi S, Li Z, Liao JC (2009) Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 75(19):6306–6311

    Article  PubMed  CAS  Google Scholar 

  2. Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K, Bisaria VS, Kondo A (2012) Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl Microbiol Biotechnol 94(3):651–658. doi:10.1007/s00253-011-3774-5

    Article  PubMed  CAS  Google Scholar 

  3. Cañas A, Owens JD (1999) Acetoin production in growing Leuconostoc mesenteroides. World J Microbiol Biotechnol 15(3):339–344

    Article  Google Scholar 

  4. Cogan TM, O’Dowd M, Mellerick D (1981) Effects of pH and sugar on acetoin production from citrate by Leuconostoc lactis. Appl Environ Microbiol 41(1):1–8

    PubMed  CAS  Google Scholar 

  5. Collier PJ, Hall TJ, Iggo JA, Johnston P, Slipszenko JA, Wells PB, Whyman R (1998) Solvent and substituent effects on the sense of the enantioselective hydrogenation of pyruvate esters catalysed by Pd and Pt in colloidal and supported forms. Chem Commun 14:1451–1452

    Article  Google Scholar 

  6. Dartois V, Coppee JY, Colson C, Baulard A (1994) Genetic analysis and overexpression of lipolytic activity in Bacillus subtilis. Appl Environ Microbiol 60(5):1670–1673

    PubMed  CAS  Google Scholar 

  7. Dettwiler B, Dunn IJ, Heinzle E, Prenosil JE (1993) A simulation model for the continuous production of acetoin and butanediol using Bacillus subtilis with integrated pervaporation separation. Biotechnol Bioeng 41(8):791–800

    Article  PubMed  CAS  Google Scholar 

  8. Dugar D, Stephanopoulos G (2011) Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol 29(12):1074–1078

    Article  PubMed  CAS  Google Scholar 

  9. Fradrich C, March A, Fiege K, Hartmann A, Jahn D, Hartig E (2012) The transcription factor AlsR binds and regulates the promoter of the alsSD operon responsible for acetoin formation in Bacillus subtilis. J Bacteriol 194(5):1100–1112

    Article  PubMed  Google Scholar 

  10. Gaspar P, Neves AR, Gasson MJ, Shearman CA, Santos H (2011) High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD(+) cofactor recycling. Appl Environ Microbiol 77(19):6826–6835

    Article  PubMed  CAS  Google Scholar 

  11. Haavik HI (1974) Studies on the formation of bacitracin by Bacillus licheniformis: role of catabolite repression and organic acids. J Gen Microbiol 84(2):321–326

    Article  PubMed  CAS  Google Scholar 

  12. Hilmi A, Belgsir EM, Léger JM, Lamy C (1997) Electrocatalytic oxidation of aliphatic diols Part V. Electro-oxidation of butanediols on platinum based electrodes. J Electroanal Chem 435(1–2):69–75

    CAS  Google Scholar 

  13. Holtzclaw WD, Chapman LF (1975) Degradative acetolactate synthase of Bacillus subtilis: purification and properties. J Bacteriol 121(3):917–922

    PubMed  CAS  Google Scholar 

  14. Ji XJ, Xia ZF, Fu NH, Nie ZK, Shen MQ, Tian QQ, Huang H (2013) Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae. Biotechnol Biofuels 6(1):7

    Article  PubMed  CAS  Google Scholar 

  15. Kaneko T, Takahashi M, Suzuki H (1990) Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu2+. Appl Environ Microbiol 56(9):2644–2649

    PubMed  CAS  Google Scholar 

  16. Martin MG, Magni C, de Mendoza D, Lopez P (2005) CitI, a transcription factor involved in regulation of citrate metabolism in lactic acid bacteria. J Bacteriol 187(15):5146–5155

    Article  PubMed  CAS  Google Scholar 

  17. McFall SM, Montville TJ (1989) pH-mediated regulation of pyruvate catabolism in Lactobacillus plantarum chemostat cultures. J Ind Microbiol Biotechnol 4(5):335–340

    CAS  Google Scholar 

  18. Nicholson WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol 74(22):6832–6838

    Article  PubMed  CAS  Google Scholar 

  19. Qin JY, Xiao ZJ, Ma CQ, Xie NZ, Liu PH, Xu P (2006) Production of 2,3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chin J Chem Eng 14(1):132–136

    Article  CAS  Google Scholar 

  20. Renna MC, Najimudin N, Winik LR, Zahler SA (1993) Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175(12):3863–3875

    PubMed  CAS  Google Scholar 

  21. Rydstrom J (1979) Assay of nicotinamide nucleotide transhydrogenases in mammalian, bacterial, and reconstituted systems. Methods Enzymol 55:261–275

    Article  PubMed  CAS  Google Scholar 

  22. Shaw WV (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 43:737–755

    Article  PubMed  CAS  Google Scholar 

  23. Starrenburg MJ, Hugenholtz J (1991) Citrate Fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol 57(12):3535–3540

    PubMed  CAS  Google Scholar 

  24. Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ (2012) Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour Technol 119:94–98. doi:10.1016/j.biortech.2012.05.108

    Article  PubMed  CAS  Google Scholar 

  25. Sun JN, Zhang LY, Rao B, Han YB, Chu J, Zhu JW, Shen YL, Wei DZ (2012) Enhanced acetoin production by Serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy. Biotechnol Bioprocess Eng 17(3):598–605

    Article  CAS  Google Scholar 

  26. Xiao Z, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Microbiol 33(2):127–140

    Article  PubMed  CAS  Google Scholar 

  27. Xiao ZJ, Liu PH, Qin JY, Xu P (2007) Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol 74(1):61–68

    Article  PubMed  CAS  Google Scholar 

  28. Xu H, Jia SR, Liu JJ (2011) Development of a mutant strain of Bacillus subtilis showing enhanced production of acetoin. Afr J Biotechnol 10(5):779–788

    CAS  Google Scholar 

  29. Yang SJ, Dunman PM, Projan SJ, Bayles KW (2006) Characterization of the Staphylococcus aureus CidR regulon: elucidation of a novel role for acetoin metabolism in cell death and lysis. Mol Microbiol 60(2):458–468

    Article  PubMed  CAS  Google Scholar 

  30. Yu EK, Saddler JN (1983) Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations. Appl Environ Microbiol 46(3):630–635

    PubMed  CAS  Google Scholar 

  31. Zhang L, Chen S, Xie H, Tian Y, Hu K (2012) Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J Chem Technol Biotechnol 87:1551–1557

    Google Scholar 

  32. Zhang X, Yang TW, Lin Q, Xu MJ, Xia HF, Xu ZH, Li HZ, Rao ZM (2011) Isolation and identification of an acetoin high production bacterium that can reverse transform 2,3-butanediol to acetoin at the decline phase of fermentation. World J Microbiol Biotechnol 27(12):2785–2790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University (NCET-10-0459), the National Basic Research Program of China (973 Program) (2012CB725202), the National Natural Science Foundation of China (30970056, 21276110), the Research Fund for the Doctoral Program of Higher Education of China (20110093120001), the Fundamental Research Funds for the Central Universities (JUSRP51306A and JUSRP21121), the 111 Project (111-2-06), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongzhen Zhang or Zhiming Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhang, R., Bao, T. et al. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis . J Ind Microbiol Biotechnol 40, 1067–1076 (2013). https://doi.org/10.1007/s10295-013-1303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1303-5

Keywords

Navigation