Skip to main content
Log in

Growth of Dunaliella tertiolecta and associated bacteria in photobioreactors

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The aim of this study was to test three flat-plate photobioreactor configurations for cultivation of marine green alga Dunaliella tertiolecta under non-axenic growth conditions and to characterize and quantify the associated bacteria. The photobioreactor cultivations were conducted using tap water-based media. Static mixers intended to enhance mixing and light utilization did not generally increase algal growth at the low light intensities used. The maximum biomass concentration (measured as volatile suspended solids) and maximum specific growth rate achieved in the flat plate with no mixer were 2.9 g l−1 and 1.3 day−1, respectively. Based on quantitative polymerase chain reaction, bacterial growth followed the growth of D. tertiolecta. Based on 16S rDNA amplification and denaturing gradient gel electrophoresis profiling, heterotrophic bacteria in the D. tertiolecta cultures mainly originated from the non-axenic algal inocula, and tap water heterotrophs were not enriched in high chloride media (3 % salinity). Bacterial communities were relatively stable and reproducible in all flat-plate cultivations and were dominated by Gammaproteobacteria, Flavobacteria, and Alphaproteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barbosa MJ, Hadiyanto, Wijffels RH (2003) Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnol Bioeng 85:78–85

    Article  Google Scholar 

  2. Berden-Zrimec M, Drinovec L, Molinari I, Zrimec A, Umani SF, Monti M (2008) Delayed fluorescence as a measure of nutrient limitation in Dunaliella tertiolecta. J Photochem Photobiol B Biol 92:13–18

    Article  CAS  Google Scholar 

  3. Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south-north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81:305–315

    Article  PubMed  CAS  Google Scholar 

  4. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  5. Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  6. Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94

    Article  PubMed  CAS  Google Scholar 

  7. Díez B, Pedrós-Alió C, Marsh T, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    Article  PubMed  Google Scholar 

  8. Eriksen NT, Riisgård FK, Gunther WS, Iversen JJL (2007) On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor. J Appl Phycol 19:161–174

    Article  PubMed  CAS  Google Scholar 

  9. Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T (2005) Marine diatom species harbor distinct bacterial communities. Environ Microbiol 7:860–873

    Article  PubMed  CAS  Google Scholar 

  10. Hai T, Ahlers H, Gorenflo V, Steinbüchel A (2000) Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria, and microalgae in a new closed tubular glass photobioreactor. Appl Microbiol Biotechnol 53:383–389

    Article  PubMed  CAS  Google Scholar 

  11. Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753

    Article  PubMed  CAS  Google Scholar 

  12. Havelková-Dousová H, Prášil O, Behrenfeld MJ (2004) Photoacclimation of Dunaliella tertiolecta (Chlorophyceae) under fluctuating irradiance. Photosynthetica 42:273–281

    Article  Google Scholar 

  13. Horiuchi JI, Ohba I, Tada K, Kobayashi M, Kanno T, Kishimoto M (2003) Effective cell harvesting of the halotolerant microalga Dunaliella tertiolecta with pH control. J Biosci Bioeng 95:412–415

    PubMed  CAS  Google Scholar 

  14. Hulatt CJ, Thomas DN (2010) Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion? Bioresour Technol 101:8690–8697

    Article  PubMed  CAS  Google Scholar 

  15. Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Change 12:573–608

    Article  Google Scholar 

  16. Janssen M, de Bresser L, Baijens T, Tramper J, Mur LR, Snel JFH, Wijffels RH (2000) Scale-up of photobioreactors: effects of mixing-induced light/dark cycles. J Appl Phycol 12:225–237

    Article  CAS  Google Scholar 

  17. Janssen M, Slenders P, Tramper J, Mur LR, Wijffels RH (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enz Microb Technol 29:298–305

    Article  CAS  Google Scholar 

  18. Jayanth K, Jeyasekaran G, Shakila RJ (2002) Isolation of marine bacteria, antagonistic to human pathogens. Indian J Mar Sci 31:39–44

    CAS  Google Scholar 

  19. Juvonen R, Koivula T, Haikara A (2008) Group-specific PCR-FLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int J Food Microbiol 125:162–169

    Article  PubMed  CAS  Google Scholar 

  20. Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147

    Article  PubMed  CAS  Google Scholar 

  21. Keshtacher-Liebson E, Hadar Y, Chen Y (1995) Oligotrophic bacteria enhance algal growth under iron-deficient conditions. Appl Environ Microbiol 61:2439–2441

    CAS  Google Scholar 

  22. Lakaniemi A-M, Intihar VM, Tuovinen OH, Puhakka JA (2012) Growth of Chlorella vulgaris and associated bacteria in photobioreactors. Microb Biotechnol 5:69–78

    Article  PubMed  CAS  Google Scholar 

  23. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

  24. Mouget JL, Dakhama A, Lavoie MC, de la Noüe J (1995) Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol Ecol 18:35–43

    Article  CAS  Google Scholar 

  25. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  26. Muyzer G, Hottenträger S, Teske A, Waver C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA—a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JD, de Bruijn F (eds) Molecular microbial ecology manual, Kluwer Academic Publishers, Dordrecht, pp 3.4.4/1–23

  27. Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96:129–134

    Article  Google Scholar 

  28. Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142:64–69

    Article  PubMed  CAS  Google Scholar 

  29. Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9:113–119

    Article  Google Scholar 

  30. Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Riemann L, Steward GF, Azam F (2000) Dynamics and bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66:578–587

    Article  PubMed  CAS  Google Scholar 

  32. Rooney-Varga JN, Giewat MW, Savin MC, Sood S, LeGresley M, Martin JL (2005) Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb Ecol 49:163–175

    Article  PubMed  CAS  Google Scholar 

  33. Sapp M, Schwaderer AS, Wiltshire KH, Hoppe HG, Gerdts G, Wichels A (2007) Species-specific bacterial communities in the phycosphere of microalgae. Microb Ecol 53:683–699

    Article  PubMed  Google Scholar 

  34. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  35. Schäfer H, Abbas B, Witte H, Muyzer G (2002) Genetic diversity of ‘satellite’ bacteria present in cultures of marine diatoms. FEMS Microbiol Ecol 42:25–35

    Article  PubMed  Google Scholar 

  36. Stenuite S, Pirlot S, Tarbe AL, Sarmento H, Lecomte M, Thill S, Leporq B, Sinyinza D, Descy JP, Servais P (2009) Abundance and production of bacteria, and relationship to phytoplankton production, in a large tropical lake (Lake Tanganyika). Freshwater Biol 54:1300–1311

    Article  CAS  Google Scholar 

  37. Stevens DA, Hamilton JR, Johnson N, Kim KK, Lee J-S (2009) Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center: three new species. Medicine 88:244–249

    Article  PubMed  Google Scholar 

  38. Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  PubMed  CAS  Google Scholar 

  39. Watanabe K, Imase M, Aoyagi H, Ohmura N, Saiki H, Tanaka H (2008) Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs. J Appl Microbiol 105:741–751

    Article  PubMed  CAS  Google Scholar 

  40. Wiley PE, Campbell JE, McKuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338

    Article  PubMed  CAS  Google Scholar 

  41. Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pertti Vuoriranta for his input to the reactor designs. This study was funded by Finnish Funding Agency for Technology and Innovation (Finland Distinguished Professor Programme, 402/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aino-Maija Lakaniemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakaniemi, AM., Intihar, V.M., Tuovinen, O.H. et al. Growth of Dunaliella tertiolecta and associated bacteria in photobioreactors. J Ind Microbiol Biotechnol 39, 1357–1365 (2012). https://doi.org/10.1007/s10295-012-1133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1133-x

Keywords

Navigation