Skip to main content
Log in

Partial deletion of rng (RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenic Escherichia coli RM10

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Previously, a native homoethanol pathway was engineered in Escherichia coli B by deletions of competing pathway genes and anaerobic expression of pyruvate dehydrogenase (PDH encoded by aceEF-lpd). The resulting ethanol pathway involves glycolysis, PDH, and alcohol dehydrogenase (AdhE). The E. coli B-derived ethanologenic strain SZ420 was then further improved for ethanol tolerance (up to 40 g l−1 ethanol) through adaptive evolution. However, the resulting ethanol tolerant mutant, SZ470, was still unable to complete fermentation of 75 g l−1 xylose, even though the theoretical maximum ethanol titer would have been less than 40 g l−1 should the fermentation have reached completion. In this study, the cra (encoding for a catabolite repressor activator) and the HSR2 region of rng (encoding for RNase G) were deleted from SZ470 in order to improve xylose fermentation. Deletion of the HSR2 domain resulted in significantly increased mRNA levels (47-fold to 409-fold) of multiple glycolytic genes (pgi, tpiA, gapA, eno), as well as the engineered ethanol pathway genes (aceEF-lpd, adhE) and the transcriptional regulator Fnr (fnr). The higher adhE mRNA level resulted in increased AdhE activity (>twofold). Although not measured, the increase of other mRNAs might also enhance expressions of their encoding proteins. The increased enzymes would then enable the resulting strain, RM10, to achieve increased cell growth and complete fermentation of 75 g l−1 xylose with an 84% improved ethanol titer (35 g l−1), compared to that (19 g l−1) obtained by the parent, SZ470. However, deletion of cra resulted in a negative impact on cell growth and xylose fermentation, suggesting that Cra is important for long-term fermentative cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aristarkhov A, Mikulskis A, Belasco JG, Lin ECC (1996) Translation of the adhE transcript to produce ethanol dehydrogenase requires RNase III cleavage in Escherichia coli. J Bacteriol 178(14):4327–4332

    PubMed  CAS  Google Scholar 

  2. Buckley M, Wall J (2006) Microbial energy conversion. A report from the American Academy of Microbiology, Washington, DC

  3. Chen K, Iverson AG, Garza EA, Grayburn WS, Zhou S (2010) Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose. Biotechnol Lett 32:87–96

    Article  PubMed  CAS  Google Scholar 

  4. Conway T, Sewell GW, Osman YA, Ingram LO (1987) Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. Appl Environ Microbiol 169:2591–2597

    CAS  Google Scholar 

  5. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  6. Deana A, Belasco JG (2004) The function of RNase G in Escherichia coli is constrained by its amino and carboxyl termini. Molecular Microbiol 51(4):1205–1217

    Article  CAS  Google Scholar 

  7. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266

    Article  PubMed  CAS  Google Scholar 

  8. Garrey SM, Blech M, Riffell JL, Hankins JS, Stickney LM, Diver M, Hsu YR, Kunanithy V, Mackie GA (2009) Substrate binding and active site residues in RNase E and G: role of the 5′-sensor. J Biol Chem 284(46):31843–31850

    Article  PubMed  CAS  Google Scholar 

  9. Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  Google Scholar 

  10. Ho NMY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    PubMed  CAS  Google Scholar 

  11. Ingram LO, Aldrich HC, Borges AC, Causey TB, Martinez A, Morales F, Saleh A, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  PubMed  CAS  Google Scholar 

  12. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17(3):320–326

    Article  PubMed  CAS  Google Scholar 

  13. Jiang X, Diwa A, Belasco JG (2000) Regions of RNase E important for 5′-end-dependent RNA cleavage and autoregulated synthesis. J Bacteriol 182(9):2468–2475

    Article  PubMed  CAS  Google Scholar 

  14. Jiang X, Belasco JG (2004) Catalytic activation of multimeric RNase E and RNase G by 5′-monophosphorylated RNA. Proc Natl Acad Sci USA 101(25):9211–9216

    Article  PubMed  CAS  Google Scholar 

  15. Jourdan SS, McDowall KJ (2008) Sensing of 5′ monophosphate by Escherichia coli RNase G can significantly enhance association with RNA and stimulate the decay of functional mRNA transcripts in vivo. Molecular Microbiol 67(1):102–115

    Article  CAS  Google Scholar 

  16. Jourdan SS, Kime L, Mcdowall KJ (2010) The sequence of sites recognized by a member of the RNase E/G family can control the maximal rate of cleavage, while a 5′-monophosphorylated end appears to function cooperatively in mediating RNA binding. Biochem Biophys Res Commun 391:879–883

    Article  PubMed  CAS  Google Scholar 

  17. Kaga N, Umitsuki G, Clark DP, Nagai K, Wachi M (2002) Extensive overproduction of the AdhE protein by rng mutations depends on mutations in the cra gene or in the Cra-box of the adhE promoter. Biochem Biophys Res Commun 295:92–97

    Article  PubMed  CAS  Google Scholar 

  18. Kaga N, Umitsuki G, Nagai K, Wachi M (2002) RNase G-dependent degradation of the eno mRNA encoding a glycolysis enzyme enolase in Escherichia coli. Biosci Biotechnol Biochem 66(10):2216–2220

    Article  PubMed  CAS  Google Scholar 

  19. Kim Y, Ingram LO, Shanmugam KT (2007) Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose and xylose without foreign genes. Appl Environ Microbiol 73(6):1766–1771

    Article  PubMed  CAS  Google Scholar 

  20. Kim Y, Ingram LO, Shanmugam KT (2008) Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J Bacteriol 190(11):3851–3858

    Article  PubMed  CAS  Google Scholar 

  21. Kuype M, Hartogg MM, Toirkens MJ, Almering MJ, Winkle AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. YEMS Yeast Res 5(4–5):399–409

    Article  Google Scholar 

  22. Leonardo MR, Cunningham PR, Clark DP (1993) Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli. J Bacteriol 175(3):870–878

    PubMed  CAS  Google Scholar 

  23. Li Z, Pandit S, Deutscher MP (1999) RNase G (CalfA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J 18(10):2878–2885

    Article  PubMed  CAS  Google Scholar 

  24. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 75:777–793

    Article  Google Scholar 

  25. Membrillo-Hernandez J, Lin ECC (1999) Regulation of expression of the adhE gene, encoding ethanol oxidoreductase in Escherichia coli: transcription from a downstream promoter and regulation by Fnr and RpoS. J Bacteriol 181(24):7571–7579

    PubMed  CAS  Google Scholar 

  26. Mikulskis A, Aristarkhov A, Lin ECC (1997) Regulation of expression of the ethanol dehydrogenase gene (adhE) in Escherichia coli by catabolite repressor activator protein Cra. J Bacteriol 179(22):7129–7134

    PubMed  CAS  Google Scholar 

  27. Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  28. Neale AD, Scopes RK, Kelley JM, Wettenhall REH (1986) The two alcohol dehydrogenase of Zymomonas mobilis. Eur J Biochem 154:119–124

    Article  PubMed  CAS  Google Scholar 

  29. Nishino K, Inazumi Y, Yamaguchi A (2003) Global analysis of genes regulated by EvgA of the two-component regulatory system in Escherichia coli. J Bacteriol 185:2667–2672

    Article  PubMed  CAS  Google Scholar 

  30. Perrenoud A, Sauer U (2005) Impact of global transcriptional regulation by AraA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 187(9):3171–3179

    Article  PubMed  CAS  Google Scholar 

  31. Popsai G, Koob MD, Kirkpatrick HA, Blattner FC (1997) Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 179:4219–4226

    Google Scholar 

  32. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawets S, Misener S (eds) Bioinformatics methods and protocols: methods on molecular biology. Humana Press, Totowa

    Google Scholar 

  33. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  34. Shin E, Go H, Yeom J, Won M, Bae J, Han SH, Han K, Lee Y, Ha N, Moore CJ, Sohlberg B, Cohen SN, Lee K (2008) Identification of amino acid residues in the catalytic domain of RNase E essential for survival of Escherichia coli: functional analysis of DNase I subdomain. Genetics 179:1871–1879

    Article  PubMed  CAS  Google Scholar 

  35. Tock MR, Walsh AP, Carroll G, McDowall KJ (2000) The CafA protein required for the 5′-maturation of 16S rRNA is a 5′-end-dependent ribonuclease that has context-dependent broad sequence specificity. J Biol Chem 275(2):8726–8732

    Article  PubMed  CAS  Google Scholar 

  36. Trinh CT, Unrean P, Srienc F (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol 74(12):3634–3643

    Article  PubMed  CAS  Google Scholar 

  37. Umitsuki G, Wachi M, Takada A, Hikichi T, Nagai K (2001) Involvement of RNase G in in vivo mRNA metabolism in Escherichia coli. Genes Cells 6:403–410

    Article  PubMed  CAS  Google Scholar 

  38. Wachi M, Umitsuki G, Shimizu N, Takada A, Nagai K (1999) Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5′ end of 16S rRNA. Biochem Biophys Res Commun 259:483–488

    Article  PubMed  CAS  Google Scholar 

  39. Wachi M, Kaga N, Umitsuki G, Clark DP, Nagai K (2001) A novel RNase G mutant that is defective in degradation of adhE mRNA but proficient in the processing of 16S rRNA precursor. Biochem Biophys Res Commun 289:1301–1306

    Article  PubMed  CAS  Google Scholar 

  40. Wang Y, Manow R, Finan C, Wang J, Garza E, Zhou S (2011) Adaptive evolution of non-transgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. J Ind Microbiol Biotechnol 38(9):1371–1377

    Article  PubMed  CAS  Google Scholar 

  41. Wang Q, Ou MS, Kim Y, Ingram LO, Shanmugam KT (2010) Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase. Appl Environ Microbiol 76(7):2107–2114

    Article  PubMed  CAS  Google Scholar 

  42. Yomano LP, York S, Zhou S, Shanmugam KT, Ingram LO (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30(12):2097–2103

    Article  PubMed  CAS  Google Scholar 

  43. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering a pentose pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  PubMed  CAS  Google Scholar 

  44. Zhou S, Iverson AG, Grayburn WS (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30:335–342

    Article  PubMed  CAS  Google Scholar 

  45. Zhou S, Iverson AG, Grayburn WS (2010) Doubling the catabolic reducing power (NADH) output of Escherichia coli fermentation for production of reduced products. Biotechnol Prog 26(1):45–51

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a summer artistry and research grant, biological research incentive fund of Northern Illinois University, a grant from the China National Natural Science Foundation (NSFC31070094), a grant from the Hubei Provincial Natural Science Foundation (2011CDA008) and the Chutian Scholar Program, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhua Wang or Shengde Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manow, R., Wang, J., Wang, Y. et al. Partial deletion of rng (RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenic Escherichia coli RM10. J Ind Microbiol Biotechnol 39, 977–985 (2012). https://doi.org/10.1007/s10295-012-1100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1100-6

Keywords

Navigation