Skip to main content
Log in

Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Due to its excellent capability to ferment five-carbon sugars, Escherichia coli has been considered one of the platform organisms to be engineered for production of cellulosic ethanol. Nevertheless, genetically engineered ethanologenic E. coli lacks the essential trait of alcohol tolerance. Development of ethanol tolerance is required for cost-effective ethanol fermentation. In this study, we improved alcohol tolerance of a nontransgenic E. coli KC01 (ldhA pflB ackA frdBC pdhR::pflBp6-aceEF-lpd) through adaptive evolution. During ~350 generations of adaptive evolution, a gradually increased concentration of ethanol was used as a selection pressure to enrich ethanol-tolerant mutants. The evolved mutant, E. coli SZ470, was able to grow anaerobically at 40 g l−1 ethanol, a twofold improvement over parent KC01. When compared with KC01 for small-scale (500 ml) xylose (50 g l−1) fermentation, SZ470 achieved 67% higher cell mass, 48% faster volumetric ethanol productivity, and 50% shorter time to complete fermentation with ethanol titer of 23.5 g l−1 and yield of 94%. These results demonstrate that an industry-oriented nontransgenic E. coli strain could be developed through incremental improvements of desired traits by a combination of molecular biology and traditional microbiology techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buckley M, Wall J (2006) Microbial energy conversion. A report from the American Academy of Microbiology, Washington DC

  2. Burdette DS, Jung SH, Shen GJ, Hollingsworth RI, Zeikus JG (2002) Physiological function of alcohol dehydrogenases and long-chain (C(30)) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl Environ Microbiol 68(4):1914–1918

    Article  PubMed  CAS  Google Scholar 

  3. Chen K, Iverson AG, Garza EA, Grayburn WS, Zhou S (2010) Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose. Biotechnol Lett 32:87–96

    Article  PubMed  CAS  Google Scholar 

  4. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266

    Article  PubMed  CAS  Google Scholar 

  5. Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO (2003) Gene array based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19(2):612–623

    Article  PubMed  CAS  Google Scholar 

  6. Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  Google Scholar 

  7. Ho NMY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    PubMed  CAS  Google Scholar 

  8. Ingram LO (1981) Mechanism of lysis of Escherichia coli by ethanol and other chaotropic agents. J Bacteriol 146:331–336

    PubMed  CAS  Google Scholar 

  9. Ingram LO (1982) On the regulation of fatty acid composition of Escherichia coli: a proposed common mechanism for changes induced by ethanol, chaotropic agents and reduction in growth temperature. J Bacteriol 149:166–172

    PubMed  CAS  Google Scholar 

  10. Ingram LO (1989) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9(4):305–319

    Article  Google Scholar 

  11. Ingram LO, Dombek KM (1989) Effects of ethanol on Escherichia coli. In: van Uden N (ed) Alcohol toxicity in yeast and bacteria. CRC, Boca Raton, pp 227–238

    Google Scholar 

  12. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17(3):320–326

    Article  PubMed  CAS  Google Scholar 

  13. Kuyper M, Hartogg MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409

    Article  PubMed  CAS  Google Scholar 

  14. Liu S, Qureshi N (2009) How microbes tolerate ethanol and butanol. New Biotechnol 26(3–4):117–121

    Article  CAS  Google Scholar 

  15. Lovitt RW, Shen GJ, Zeihus JG (1988) Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170(6):2809–2815

    PubMed  CAS  Google Scholar 

  16. Luo LH, Seo PS, Seo JW, Heo SY, Kim DH, Kim CH (2009) Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation. Biotechnol Lett 31:1867–1871

    Article  PubMed  CAS  Google Scholar 

  17. Pinkart HC, White DC (1997) Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J Bacteriol 179:4219–4226

    PubMed  CAS  Google Scholar 

  18. Sikkema J, de Bont JAM, Poolman B (1995) Mechanism of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    PubMed  CAS  Google Scholar 

  19. Song S, Park C (1997) Organization and regulation of the d-xylose operon in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol 179(22):7025–7032

    PubMed  CAS  Google Scholar 

  20. Sudha Rani K, Swamy MV, Sunitha D, Haritha D, Seenayya G (1996) Improved ethanol tolerance and production in strains of Clostridium thermocellum. World J Microbiol Biotechnol 12(1):57–60

    Article  Google Scholar 

  21. Trinh CT, Huffer S, Clark ME, Blanch HW, Clark DS (2010) Elucidating mechanisms of solvent toxicity in ethanologenic Escherichia coli. Biotechnol Bioeng. doi:10.1002/bit.22743

  22. Wang Z, Chen M, Xu Y, Li S, Lu W, Ping S, Zhang W, Lin M (2008) An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose. Biotechnol Lett 30:657–663

    Article  PubMed  CAS  Google Scholar 

  23. Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132–138

    Article  PubMed  CAS  Google Scholar 

  24. Yomano LP, York S, Zhou S, Shanmugam KT, Ingram LO (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30(12):2097–2103

    Article  PubMed  CAS  Google Scholar 

  25. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering a pentose pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  PubMed  CAS  Google Scholar 

  26. Zhou S, Iverson AG, Grayburn WS (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30:335–342

    Article  PubMed  CAS  Google Scholar 

  27. Zhou S, Iverson AG, Grayburn WS (2010) Doubling the catabolic reducing power (NADH) output of Escherichia coli fermentation for production of reduced products. Biotechnol Prog 26(1):45–51

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Summer Artistry and Research grant, the PMBC research incentive fund of Northern Illinois University, and the China NSF grant (31070094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengde Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Manow, R., Finan, C. et al. Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. J Ind Microbiol Biotechnol 38, 1371–1377 (2011). https://doi.org/10.1007/s10295-010-0920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0920-5

Keywords

Navigation