Skip to main content
Log in

Purification and characterization of an arginine regulatory protein, ArgR, in Corynebacterium glutamicum

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Corynebacterium glutamicum, a Gram-positive bacterium, has been widely used for industrial amino acid production. We previously showed that, in C. glutamicum, argCJBDFRGH arginine biosynthesis genes are clustered but independently transcribed from argC and argG promoters, leading to the generation of two transcripts corresponding to argCJBDFR and argGH. In this report, we show the effect of the C. glutamicum ArgR repressor on argC and argG promoters by overexpressing or disrupting the argR gene. Gel filtration assay results indicate that native ArgR is a hexamer of equal subunits with molecular mass of 110 kDa. Protein sequence analysis revealed the presence of an “SR” (Ser57-Arg58) motif for the DNA binding site at the N-terminal region and the “GTIAGDDTV” motif for arginine binding and its oligomerization at the C-terminal region. An argC or argG promoter–lacZ fusion reporter assay and argR mutational analysis showed that transcription of the argCJBDFR arginine biosynthesis genes is regulated from the argC promoter by ArgR in cooperation with l-arginine in C. glutamicum. This finding was supported by the gel mobility–shift assay showing direct binding of hexameric ArgR to the argC promoter in the presence of l-arginine. Unexpectedly, argGH transcription was not responsive to the level of ArgR repressor and/or arginine. In a further study, a C. glutamicum argR mutant was constructed by disrupting the chromosomal argR gene to manufacture an improved arginine-producing strain. Arginine productivity was increased in the C. glutamicum argR mutant strain under conditions of both limited and excessive arginine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alén C, Sherratt DJ, Colloms SD (1997) Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination. EMBO 16:5188–5197

    Article  Google Scholar 

  2. Batt CA, Follettie MT, Shin HK, Yeh P, Sinskey AJ (1985) Genetic engineering of Coryneform bacteria. Trends Biotechnol 3:305–310

    Article  CAS  Google Scholar 

  3. Charlier D, Roovers M, Vliet FV, Boyen A, Cunin R, Nakamura Y, Glandorff N, Piérard A (1992) Arginine Regulon of Escherichia coli K-12: a study of repressor-operator interactions and of in vitro binding affinities versus in Vitro repression. J Mol Biol 226:367–386

    Article  PubMed  CAS  Google Scholar 

  4. Chen SH, Merican AF, Sherratt DJ (1997) DNA binding of Escherichia coli arginine repressor mutants altered in oligomeric state. Mol Microbiol 24:1143–1153

    Article  PubMed  CAS  Google Scholar 

  5. Chun JY, Lee EJ, Lee HS, Cheon CI, Min KH, Lee MS (1998) Molecular cloning and analysis of the argC gene from Corynebacterium glutamicum. Biochem Mol Biol Int 46:437–447

    PubMed  CAS  Google Scholar 

  6. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Lsborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squres S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1988) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Google Scholar 

  7. Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352

    PubMed  CAS  Google Scholar 

  8. Dion M, Charlier D, Wang H, Gigot D, Savchenko A, Hallet JN, Glansdorff N, Sakanyan V (1997) The highly thermostable arginine repressor of Bacillus stearothermophilus: gene cloning and repressor-operator interactions. Mol Microbiol 25:385–398

    Article  PubMed  CAS  Google Scholar 

  9. Floriano B, Herrero A, Flores E (1994) Analysis of expression of the argC and argD genes in the Cyanobacterium Anabaena sp. strain PCC7120. J Bacteriol 176:6397–6401

    PubMed  CAS  Google Scholar 

  10. Gardan R, Rappont G, Débarbouillé M (1997) Expression of the rocDEF operon involved in arginine catabolism in Bacillus sutilis. J Mol Biol 249:843–856

    Article  Google Scholar 

  11. Grandori R, Lavoie TA, Pflumm M, Tian G, Niersbach H, Maas WK, Fairman R, Carey J (1995) The DNA-binding domain of the hexameric arginine repressor. J Mol Biol 254:150–162

    Article  PubMed  CAS  Google Scholar 

  12. Haas D, Holloway BW (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22

    Article  PubMed  CAS  Google Scholar 

  13. Harris Z, Singer M (1998) Identification and characterization of the Myxococcus xanthus argE gene. J Bacteriol 180:6412–6414

    PubMed  CAS  Google Scholar 

  14. Hodgman TC, Griffiths H, Summers DK (1998) Nucleoprotein architecture and ColE1 dimer resolution: a hypothesis. Mol Microbiol 29:545–558

    Article  PubMed  CAS  Google Scholar 

  15. Hui S, Haifeng W, Diliana D, Vehary S, Nicolas G, Daniel C (2002) Transcription regulation in thermophilic Bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions. J Mol Biol 315:255–274

    Article  Google Scholar 

  16. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome; Features and impacts on biotechonolgical processes. Appl Microbiol Biotechnol 62:99–109

    Article  PubMed  CAS  Google Scholar 

  17. Itoh Y (1997) Cloning and characterization of the aru genes encoding enzymes of the catabolic arginine succinyltransferase pathway in Pseudomonas aeruginosa. J Bacteriol 197:7280–7290

    Google Scholar 

  18. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  PubMed  CAS  Google Scholar 

  19. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603

    PubMed  CAS  Google Scholar 

  20. Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of industrial microorganisms. Benjamin/Commings, London, pp 115–142

    Google Scholar 

  21. Lee HS, Sinskey AJ (1994) Molecular characterization of AceB, a gene encoding malate synthase in Corynebacterium glutamicum. J Microbiol Biotechnol 4:256–263

    CAS  Google Scholar 

  22. Liebl W, Klamer R, Schleifer KH (1989) Requirement of chelating compounds for the growth of Corynebacterium glutamicum in synthetic media. Appl Microbiol Biotechnol 32:205–210

    Article  CAS  Google Scholar 

  23. Lim D, Oppenheim JD, Eckhardt T, Maas WK (1987) Nucleotide sequence of the argR gene of Escherichia coli K-12 and isolation of its product, the arginine repressor. Proc Natl Acad Sci USA 84:6697–6701

    Article  PubMed  CAS  Google Scholar 

  24. Maghnouj A, De Sousa Cabral TF, Stalon V, Wauven CV (1998) The arcABCD Gene Cluster, encoding the Arginine Deminase Pathway of Bacillus licheniformis, and Its Activation by the Arginine Repressor ArgR. J Bacteriol 180:6468–6475

    PubMed  CAS  Google Scholar 

  25. Martin JF (1989) Molecular genetics of amino acid-producing Corynebacteria. In: Baumberg S, Hunter I, Rhodes M (eds) H. I. R. M. e. S. f. G. M. S. 4. Cambridge University Press, Cambridge, pp 25–59

    Google Scholar 

  26. Miller CM, Baumberg S, Stockley PG (1997) Operator interactions by the Bacillus subtilis arginine repressor activator, AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites. Mol Microbiol 26:37–48

    Article  PubMed  CAS  Google Scholar 

  27. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  28. Nishijyo T, Park SM, Lu CD, Itoh Y, Abdelal AT (1998) Molecular characterization and regulation of an operon encoding a system for transport of arginine and ornithine and the ArgR regulatory protein in Pseudomonas aeruginosa. J Bacteriol 180:5559–5566

    PubMed  CAS  Google Scholar 

  29. Park SM, Lu CD, Abdelal AT (1997) Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 179:5300–5308

    PubMed  CAS  Google Scholar 

  30. Park SM, Lu CD, Abdelal AT (1997) Purification and characterization of an arginine regulatory protein, ArgR, from Pseudomonas aeruginosa and its interactions with the control regions for the car, argF, and aru operons. J Bacteriol 179:5309–5317

    PubMed  CAS  Google Scholar 

  31. Rodríguez-García A, Lndovice M, Martin JF, Liras P (1997) Arginine boxes and the argR gene in Streptomyces clavuligerus: evidence for a clear regulation of the arginine pathway. Mol Microbiol 25:219–228

    Article  PubMed  Google Scholar 

  32. Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff M (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacteirum glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology 142:99–108

    Article  PubMed  CAS  Google Scholar 

  33. Sambrook J, Russell D (2001) Molecular cloning. A laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  34. Schafer A, Kalinowski J, Simon R, Seep-Feldhaus A-H, Puhler A (1990) High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol 172:1663–1666

    PubMed  CAS  Google Scholar 

  35. Schwarzer A, Puhler A (1991) Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology 2:84–87

    Google Scholar 

  36. Simons R, Houman F, Kleckner N (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96

    Article  PubMed  CAS  Google Scholar 

  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penaltics and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  38. Tian G, Lim D, Carey J, Mass WK (1992) Binding of the arginine repressor of Escherichia coli K12 to its operator sites. J Mol Biol 226:387–397

    Article  PubMed  CAS  Google Scholar 

  39. Tian G, Maas WK (1994) Mutational analysis of the arginine repressor of Escherichia coli. Mol Microbiology 13:599–608

    Article  CAS  Google Scholar 

  40. Udaka S (1966) Pathway-specific pattern of control of arginine biosynthesis in bacteria. J Bacteriol 91:617–621

    PubMed  CAS  Google Scholar 

  41. Van de Casteele M, Dmarez M, Legrain C, Glansdorff N, Pierard A (1990) Pathways of arginine biosynthesis in extreme thermophilic archaeo- and eubacteria. J Gen Microbiol 136:1177–1183

    Google Scholar 

  42. Xu Y, Liang Z, Legrain C, Ruger J, Glansdorff N (2000) Evolution of arginine biosynthesis in the bacterial domain: novel gene-enzyme relationships from psychrophilic Moritella strains (Vibrionaceae) and evolutionary significance of N-alpha-acetyl ornithinase. J Bacteriol 182:1609–1615

    Article  PubMed  CAS  Google Scholar 

  43. Yim SH, Kim SH, Park MY, Jung SI, Lee HS, Cheon CI, Song ES, Lee SS, Lee MS (2008) Analysis of gene expression in arginine biosynthetic gene cluster of C. glutamicum. Genes Genomics 30:261

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Sookmyung Women’s University (2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong-Sok Lee.

Additional information

S.-H. Yim and S. Jung contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yim, SH., Jung, S., Lee, Sk. et al. Purification and characterization of an arginine regulatory protein, ArgR, in Corynebacterium glutamicum . J Ind Microbiol Biotechnol 38, 1911–1920 (2011). https://doi.org/10.1007/s10295-011-0977-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0977-9

Keywords

Navigation