Skip to main content
Log in

Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Unlike many oleaginous microorganisms, E. coli only maintains a small amount of natural lipids in cells, impeding its utility to overproduce fatty acids. In this study, acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus was expressed in E. coli to redirect the carbon flux to the generation of malonyl-CoA, which resulted in a threefold increase in intracellular lipids. Moreover, providing a high level of NADPH by overexpressing malic enzyme and adding malate to the culture medium resulted in a fourfold increase in intracellular lipids (about 197.74 mg/g). Co-expression of ACC and malic enzyme resulted in 284.56 mg/g intracellular lipids, a 5.6-fold increase compared to the wild-type strain. This study provides some attractive strategies for increasing lipid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms, which could aid the development of a prokaryotic fatty acid producer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  PubMed  CAS  Google Scholar 

  2. Bologna FP, Andreo CS, Drincovich MF (2007) Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure. J Bacteriol 189:5937–5946

    Article  PubMed  CAS  Google Scholar 

  3. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  4. Chang MCF, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681

    Article  PubMed  CAS  Google Scholar 

  5. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  6. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  PubMed  CAS  Google Scholar 

  7. Cronan JE, Waldrop GL (2002) Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41:407–435

    Article  PubMed  CAS  Google Scholar 

  8. Davis MS, Solbiati J, Cronan JE Jr (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275:28593–28598

    Article  PubMed  CAS  Google Scholar 

  9. Davis MS, Cronan JE Jr (2001) Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J Bacteriol 183:1499–1503

    Article  PubMed  CAS  Google Scholar 

  10. Folch J, Lees JM, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  11. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  PubMed  CAS  Google Scholar 

  12. Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiol 152:2529–2536

    Article  CAS  Google Scholar 

  13. Leonard E, Lim KH, Saw PN, Koffas MAG (2007) Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Enviro Microbiol 73:3877–3886

    Article  CAS  Google Scholar 

  14. Lowry RR, Tinsley IJ (1976) Rapid colorimetric determination of free fatty acids. J Am Oil Chem Soc 53:470–472

    Article  PubMed  CAS  Google Scholar 

  15. Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    Article  PubMed  CAS  Google Scholar 

  16. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    PubMed  CAS  Google Scholar 

  17. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312

    Article  PubMed  CAS  Google Scholar 

  18. Ratledge C (2004) Fatty aid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  PubMed  CAS  Google Scholar 

  19. Rose HG, Oklander M (1965) Improved procedure for the extraction of lipids from human erythrocytes. J Lipid Res 6:428–431

    PubMed  CAS  Google Scholar 

  20. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  21. Sanwal BD (1970) Regulatory characteristics of the diphosphopyridine nucleotide-specific malic enzyme of Escherichia coli. J Biol Chem 245:1212–1216

    PubMed  CAS  Google Scholar 

  22. Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794

    Article  PubMed  CAS  Google Scholar 

  23. Soriano A, Radice AD, Herbitter AH, Langsdorf EF, Stafford JM, Chan S, Wang S, Liu Y, Black TA (2006) Escherichia coli acetyl-coenzyme A carboxylase: characterization and development of a high-throughput assay. Anal Biochem 349:268–276

    Article  PubMed  CAS  Google Scholar 

  24. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    Article  PubMed  CAS  Google Scholar 

  25. Subrahmanyam S, Cronan JE Jr (1998) Overproduction of a functional fatty acid synthesis in Escherichia coli. J Bacteriol 180:4596–4602

    PubMed  CAS  Google Scholar 

  26. Takamura Y, Nomura G (1988) Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K 12. Microbiol 134:2249–2253

    Article  CAS  Google Scholar 

  27. Tang W, Zhang SF, Tan HD, Zhao ZBK (2010) Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Mol Biotechnol 45:121–128

    Article  PubMed  CAS  Google Scholar 

  28. Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  PubMed  CAS  Google Scholar 

  29. Wynn JP, Ratledge C (1997) Malic enzyme is a major source of NADPH for lipids accumulation by Aspergillus nidulans. Microbiol 143:253–257

    Article  CAS  Google Scholar 

  30. Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiol 147:2857–2864

    CAS  Google Scholar 

  31. Zha W, Rubin-Pitel SB, Shao Z, Zhao H (2009) Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 11:192–198

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Y, Adams LP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiol 153:2013–2025

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the CAS 100 Talents Program (KGCXZ-YW-801) and the National Science Fundation (20872075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Xian.

Additional information

X. Meng and J. Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, X., Yang, J., Cao, Y. et al. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J Ind Microbiol Biotechnol 38, 919–925 (2011). https://doi.org/10.1007/s10295-010-0861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0861-z

Keywords

Navigation