Skip to main content
Log in

The production of hydrogen sulphide and other aroma compounds by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The aim of this study was to evaluate the combined effect of initial nitrogen content on the production of hydrogen sulphide and other volatile compounds during alcoholic fermentation. For that propose, three commercial wine strains of Saccharomyces cerevisiae were used to ferment synthetic grape juice media under different nitrogen concentrations. H2S was measured throughout fermentations and other aroma compounds were analyzed at the end of the experiments. The trigger levels at which an inverse relationship between the initial nitrogen present in media and total H2S production varied among the three strains tested. For UCD522 and PYCC4072, the highest H2S levels were produced in media with 267 mg N l−1 of initial nitrogen, whereas the lowest levels were detected with nitrogen limitation/starvation conditions (66 mg N l−1). Moreover, 21 other aroma compounds belonging to different chemical classes were identified and quantified by solid phase micro-extraction (SPME) coupled to gas chromatography–mass spectrometry (GC–MS). The initial nitrogen concentration more than yeast strain had a decisive effect on the final aroma composition, suggesting that modulation of nutrients emerges as a useful tool for producing desired flavour and odour compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acree TE, Sonoff EP, Splittstoesser DF (1971) Determination of hydrogen sulfide in fermentation broths containing SO2. Appl Microbiol 22:110–112

    PubMed  CAS  Google Scholar 

  2. Acree TE, Sonoff EP, Splittstoesser DF (1972) Effect of yeast strain and type of sulphur compound on hydrogen sulphide production. Am J Enol Vitic 23:6–9

    Google Scholar 

  3. Agenbach W (1977) A study of must nitrogen content in relation to incomplete fermentations, yeast production and fermentation activity. In: Beukman EF (ed) Proceedings of the South African Society for Enology and Viticulture. South Africa, Stellenbosch, pp 66–87

  4. Bely M, Rinaldi A, Dubourdieu D (2003) Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J Biosci Bioeng 96:507–512. doi:10.1016/S1389-1723(04)70141-3

    Article  PubMed  CAS  Google Scholar 

  5. Bohlscheid JC, Fellman JK, Wang XD, Ansen D, Edwards CG (2007) The influence of nitrogen and biotin interaction on the performance of Saccharomyces in alcoholic fermentation. J Appl Microbiol 102:390–400. doi:10.1111/j.1365-2672.2006.03180.x

    Article  PubMed  CAS  Google Scholar 

  6. Carrau FM, Medina K, Boido E, Farina L, Gaggero C, Dellacassa E, Versini G, Henschke PA (2005) De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 243:107–115. doi:10.1016/j.femsle.2004.11.050

    Article  PubMed  CAS  Google Scholar 

  7. Carrau FM, Medina K, Farina L, Boido E, Henschke PA, Dellacassa E (2008) Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res 8:1196–1207. doi:10.1111/j.1567-1364.2008.00412.x

    Article  PubMed  CAS  Google Scholar 

  8. Crowell EA, Guymon JF, Ingraham JL (1961) Techniques for Studying the Mechanism of Higher Alcohol Formation by Yeasts. Am J Enol Vitic 12:111–116

    CAS  Google Scholar 

  9. Fia G, Giovani G, Rosi I (2005) Study of beta-glucosidase production by wine-related yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity. J Appl Microbiol 99:509–517. doi:10.1111/j.1365-2672.2005.02657.x

    Article  PubMed  CAS  Google Scholar 

  10. Gardner JM, Poole K, Jiranek V (2002) Practical significance of relative assimilable nitrogen requirements of yeast: a preliminary study of fermentation performance and liberation of H2S. Aust J Grape Wine Res 8:175–179. doi:10.1111/j.1755-0238.2002.tb00253.x

    Article  CAS  Google Scholar 

  11. Gardner JM, McBryde C, Vystavelova A, De Barros Lopes M, Jiranek V (2005) Identification of genes affecting glucose catabolism in nitrogen-limited fermentation. FEMS Yeast Res 5:791–800. doi:10.1016/j.femsyr.2005.02.008

    Article  PubMed  CAS  Google Scholar 

  12. Henschke PA, Jiranek V (1993) Yeasts—metabolism of nitrogen compounds. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood, Switzerland, pp 77–164

    Google Scholar 

  13. Hernández LF, Espinosa JC, Fernández-González M, Briones A (2003) Beta-glucosidase activity in a Saccharomyces cerevisiae wine strain. Int J Food Microbiol 80:171–176. doi:10.1016/S0168-1605(02)00149-6

    Article  PubMed  Google Scholar 

  14. Hernández-Orte P, Ibarz MJ, Cacho J, Ferreira V (2005) Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine. Food Chem 89:163–174. doi:10.1016/j.foodchem.2004.02.021

    Article  Google Scholar 

  15. Herrero O, Ramón D, Orejas M (2008) Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine. Metab Eng 10:78–86. doi:10.1016/j.ymben.2007.11.001

    Article  PubMed  CAS  Google Scholar 

  16. Jiranek V, Langridge P, Henschke PA (1995) Regulation of hydrogen sulphide liberation in wine producing S. cerevisiae strains by assimilable nitrogen. Appl Environ Microbiol 61:461–467

    PubMed  CAS  Google Scholar 

  17. Martorell N, Martí MP, Mestres M, Busto O, Guasch J (2002) Determination of 4-ethylguaiacol and 4-ethylphenol in red wines using headspace-solid-phase microextraction-gas chromatography. J Chromatogr A 975:349–354. doi:10.1016/S0021-9673(02)01277-3

    Article  PubMed  CAS  Google Scholar 

  18. Mendes-Ferreira A, Mendes-Faia A, Leão C (2002) Survey of hydrogen sulphide production by wine yeasts. J Food Prot 65:1033–1037

    PubMed  CAS  Google Scholar 

  19. Mendes-Ferreira A, Mendes-Faia A, Leão C (2004) Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry. J Appl Microbiol 97:540–545. doi:10.1111/j.1365-2672.2004.02331.x

    Article  PubMed  CAS  Google Scholar 

  20. Mendes-Ferreira A, del Olmo M, Garcia-Martinez J, Jiménez-Martí E, Leão C, Mendes-Faia A, Perez-Ortin JE (2007) Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation. Appl Environ Microbiol 73:5363–5369. doi:10.1128/AEM.01029-07

    Article  PubMed  CAS  Google Scholar 

  21. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  22. Office International de la Vigne et du Vin (1990) Recueil des méthodes internationales d’analyse des vins et des moûts. OIV, Paris

    Google Scholar 

  23. Rapp A, Versini G (1991) Influence of nitrogen compounds in grapes on aroma compounds of wine. In: Rantz (ed.) Proceedings of the international symposium on nitrogen in grapes and wines. American Society for Enology and Viticulture, Davis, CA, pp 156–164

  24. Rauhut D (1993) Yeasts—production of sulfur compounds. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood, Switzerland, pp 183–223

    Google Scholar 

  25. Rees TD, Gyllenspetz AB, Docherty AC (1971) The determination of trace amounts of sulphide in condensed steam with NN-diethyl-p-phenylenediamine. Analyst (Lond) 96:201–208. doi:10.1039/an9719600201

    Article  CAS  Google Scholar 

  26. Romano P, Fiore C, Paraggio M, Caruso M, Capece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169–180. doi:10.1016/S0168-1605(03)00290-3

    Article  PubMed  CAS  Google Scholar 

  27. Rosi I, Vinella M, Domizio P (1994) Characterization of β-glucosidase activity in yeasts of oenological origin. J Appl Bact 77:519–527

    CAS  Google Scholar 

  28. Rupela OP, Tauro P (1985) Genetic control of hydrogen sulfide retention in Saccharomyces cerevisiae. Biotechnol Lett 7:279–282. doi:10.1007/BF01042378

    Article  CAS  Google Scholar 

  29. Schutz M, Kunkee RE (1977) Formation of hydrogen sulfide from elemental sulfur during fermentation by wine yeast. Am J Enol Vitic 28:137–144

    Google Scholar 

  30. Sea K, Butzke C, Boulton RB (1998) Seasonal variation in the production of hydrogen sulfide during wine fermentations. In: Waterhouse AL, Ebeler SE (eds) Chemistry of wine flavor. American Chemical Society, Washington DC, pp 81–95

    Google Scholar 

  31. Spiropoulos A, Tanaka J, Flerianos Y, Bisson LF (2000) Characterization of hydrogen sulfide in commercial and natural wine isolates of Saccharomyces. Am J Enol Vitic 51:233–248

    CAS  Google Scholar 

  32. Stratford M, Rose AH (1985) Hydrogen sulphide production from sulphite by Saccharomyces cerevisiae. J Gen Microbiol 131:1417–1424

    CAS  Google Scholar 

  33. Swiegers JH, Pretorius IS (2005) Yeast modulation of wine flavor. Adv Appl Microbiol 57:131–175. doi:10.1016/S0065-2164(05)57005-9

    Article  PubMed  CAS  Google Scholar 

  34. Thomas CS, Boulton RB, Silacci MW, Gubler WD (1993) The effect of elemental sulfur, yeast strain and fermentation medium on hydrogen sulfide production during fermentation. Am J Enol Vitic 44:211–216

    CAS  Google Scholar 

  35. Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    PubMed  CAS  Google Scholar 

  36. Tokuyamai T, Kuraishi H, Aida K, Uemura T (1973) Hydrogen sulfide evolution due to pantothenic acid deficiency in the yeast requiring this vitamin, with special reference to the effect of adenosine triphosphate on yeast cysteine desulfhydrase. Gen Appl Microbiol 19:439–466. doi:10.2323/jgam.19.439

    Article  Google Scholar 

  37. Tromp A (1984) the effect of yeast strain, grape solids, nitrogen and temperature on fermentation rate and wine quality. S Afr J Enol Vitic 5:1–6

    CAS  Google Scholar 

  38. Ugliano M, Siebert T, Mercurio M, Capone D, Henschke PA (2008) Volatile and color composition of young and model-aged Shiraz wines as affected by diammonium phosphate supplementation before alcoholic fermentation. J Agric Food Chem 56:9175–9182. doi:10.1021/jf801273k

    Article  PubMed  CAS  Google Scholar 

  39. Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 70:3392–3400. doi:10.1128/AEM.70.6.3392-3400.2004

    Article  PubMed  CAS  Google Scholar 

  40. Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Biotechnol 77:145–157. doi:10.1007/s00253-007-1145-z

    Article  PubMed  CAS  Google Scholar 

  41. Vos PJA, Gray RS (1979) The origin and control of H2S during fermentation of grape must. Am J Enol Vitic 30:187–197

    CAS  Google Scholar 

  42. Wainwright T (1971) Production of H2S by yeasts: role of nutrients. J Appl Bact 34:161–171

    CAS  Google Scholar 

  43. Wang XD, Bohlscheid JC, Edwards CG (2003) Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid. J Appl Microbiol 94:1–11. doi:10.1046/j.1365-2672.2003.01827.x

    Article  Google Scholar 

  44. Webb AD, Ingraham JL (1963) Fusel oil. Adv Appl Microbiol 5:317–353. doi:10.1016/S0065-2164(08)70014-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was done as part of the FCT project PTDC/AGR-ALI/71460/2006. The authors thank Dr. J. Coutinho for the ammonium determination and Dr. R.N. Bennett for English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arlete Mendes-Faia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes-Ferreira, A., Barbosa, C., Falco, V. et al. The production of hydrogen sulphide and other aroma compounds by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations. J Ind Microbiol Biotechnol 36, 571–583 (2009). https://doi.org/10.1007/s10295-009-0527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0527-x

Keywords

Navigation