Skip to main content
Log in

Production and optimization of thermophilic alkaline protease in solid-state fermentation by Streptomyces sp. CN902

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The purpose of the present research is to study the production of thermophilic alkaline protease by a local isolate, Streptomyces sp. CN902, under solid state fermentation (SSF). Optimum SSF parameters for enzyme production have been determined. Various locally available agro-industrial residues have been screened individually or as mixtures for alkaline protease production in SSF. The combination of wheat bran (WB) with chopped date stones (CDS) (5:5) proved to be an efficient mixture for protease production as it gave the highest enzyme activity (90.50 U g−1) when compared to individual WB (74.50 U g−1) or CDS (69.50 U g−1) substrates. This mixed solid substrate was used for the production of protease from Streptomyces sp. CN902 under SSF. Maximal protease production (220.50 U g−1) was obtained with an initial moisture content of 60%, an inoculum level of 1 × 108 (spore g−1 substrate) when incubated at 45°C for 5 days. Supplementation of WB and CDS mixtures with yeast extract as a nitrogen source further increased protease production to 245.50 U g−1 under SSF. Our data demonstrated the usefulness of solid-state fermentation in the production of alkaline protease using WB and CDS mixtures as substrate. Moreover, this approach offered significant benefits due to abundant agro-industrial substrate availability and cheaper cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitra P, Chakraverty R, Chandra A (1996) Production of proteolytic enzymes by solid state fermentation—an overview. J Sci Ind Res 55:439–442

    CAS  Google Scholar 

  2. Pandey A, Soccol C, Rodriguez-Leon J, Nigam P (2001) Solid-state fermentation in biotechnology—fundamentals and applications. Asiatech, New Delhi, pp 100–221

    Google Scholar 

  3. Ferrero M, Castro G, Abate C, Baigori M, Sineriz F (1996) Thermostable alkaline protease of Bacillus licheniformis MIR 29: isolation, production and characterization. Appl Microbiol Biotechnol 45:327–332

    Article  CAS  Google Scholar 

  4. Ng T, Kenealy W (1986) Industrial application of thermostable enzyme. In: Brock TD (ed) Thermophiles: general, molecular and applied microbiology. John Wiley, New York, pp 197–205

    Google Scholar 

  5. Elibol M, Moreira A (2005) Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation. Process Biochem 40:1951–1956

    Article  CAS  Google Scholar 

  6. Wiseman A (1993) Designer enzyme and cell applications in industry and in environmental monitoring. J Chem Technol Biotechnol 53:3–13

    Google Scholar 

  7. Zamost BL, Nielsen H, Starnes R (1991) Thermostable enzymes for industrial applications. J Ind Microbiol 8:71–82

    Article  CAS  Google Scholar 

  8. Sandhya C, Sumantha A, Szakacs G, Pandey A (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40:2689–2694

    Article  CAS  Google Scholar 

  9. Rao M, Tanksale A, Ghatge M, Deshpande V (1998) Molecular and biotechnological aspect of microbial proteases. Microbiol Mol Biol R 62:597–635

    CAS  Google Scholar 

  10. Hadeer A (1999) Optimization of Streptomyces griseus pronase production by solid substrate fermentation. Iraq J Sci 40B:15–26

    Google Scholar 

  11. Yang S, Wang J (1999) Protease and amylase production of Streptomyces rimosus in submerged and solid state cultivation. Bot Bull Acad Sin 40:259–265

    CAS  Google Scholar 

  12. Yeoman K, Edwards C (1994) Protease production by Streptomyces thermovulgaris grown on rapemeal-derived media. J Appl Bacteriol 77:264–270

    PubMed  CAS  Google Scholar 

  13. Muro T, Murakami T, Tominaga Y, Tokuyama T, Okada S (1991) Purification and some propereties of protease having transfer action from Streptomyces griseus var.alcalophilus. Agric Biol Chem 55:307–314

    PubMed  CAS  Google Scholar 

  14. Sandhya C, Madhavan Nampoothiri K, Pandey A (2005) Microbial proteases. In: Barredo JL (ed) Microbial enzymes and biotransformations, vol 17. The Human Press Inc, New Jersey, pp 165–180

    Google Scholar 

  15. Mudgetti R (1986) Solid-state fermentation. In: Demain Arnold L, Solmen Nadine A (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC, pp 66–83

    Google Scholar 

  16. Kota KP, Sridhar P (1999) Solid state cultivation of Streptomyces clavuligerus for cephamycin C production. Process Biochem 34:325–328

    Article  CAS  Google Scholar 

  17. Ellaiah P, Srinivasulu B, Adinarayana K (2004) Optimisation studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation. Process Biochem 39:529–534

    Article  CAS  Google Scholar 

  18. De Azeredo LAI, De Lima MB, Coelho RRR, Freire DMG (2006) Low-cost fermentation medium for thermophilic protease production by Streptomyces sp. 594 using feather meal and steep liquor. Curr Microbiol 53:335–339

    Article  PubMed  CAS  Google Scholar 

  19. Yang S, Yan Q, Jiang Z, Li L, Tian H, Wang Y (2006) High-level of xylanase production by the thermophilic Paecilomyces themophila j18 on wheat straw in solid-state fermentation. Bioresour Technol 97:1794–1800

    Article  PubMed  CAS  Google Scholar 

  20. Diaz J, Rodriguez A, Roussos S, Cordova J, Abousalham A, Carriere F, Baratti J (2006) Lipase from thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb Technol 39:1042–1050

    Article  CAS  Google Scholar 

  21. Ertan F, Balkan B, Balkan S, Aktac T (2006) Solid state fermentation for the production of α-amylase from Penicillium chrysogenum using mixed agricultural by-products as substrate. Biologia 61:657–661

    Article  CAS  Google Scholar 

  22. De Azeredo LAI, De Lima MB, Coelho RRR, Freire DMG (2005) Thermophilic protease production by Streptomyces sp. 594 in submerged and solid-state fermentation using feather meal. J Appl Microbiol 100:641–647

    Article  CAS  Google Scholar 

  23. Shankar S, Mulimani V (2007) α-Galactosidase production by Aspergillus oryzae in solid-state fermentation. Bioresour Technol 98:958–961

    Article  PubMed  CAS  Google Scholar 

  24. Ellaiah P, Adinarayana K, Pardasaradhi S, Srinivasulu B (2002) Isolation of alkaline protease producing bacteria from Visakhapatnam soil. Ind J Microbiol 42:173–175

    Google Scholar 

  25. Kieser T, Bibb M, Buttner M, Chater K, Hopwood D (2000) Practical Streptomyces genetics: The John Innes Foundation. Norwich Research Park, Colney, pp 44–61

    Google Scholar 

  26. Malathi S, Chakraborty R (1991) Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Appl Environ Microbiol 57:712–716

    PubMed  CAS  Google Scholar 

  27. Yang JK, Shih IL, Tzeng YM, Wang SL (2000) Production and purification of protease from a Bacillus subtilis that can deproteinise crustacean wastes. Enzyme Microb Technol 26:406–413

    Article  PubMed  CAS  Google Scholar 

  28. Uyar F, Baysal Z (2004) Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochem 39:1893–1898

    Article  CAS  Google Scholar 

  29. Kumar A, Sachdev A, Balasubramanyam SD, Saxena AK, Lata (2002) Optimization of conditions for production of neutral and alkaline protease from species of Bacillus and Pseudomonas. Ind J Microbiol 42:233–236

    Google Scholar 

  30. Chellappan S, Jasmin C, Basheer M, Elyas K, Bhat G, Chandrasekaran M (2006) Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid staye fermentation. Process Biochem 41:956–961

    Article  CAS  Google Scholar 

  31. Beg KQ, Bhushan B, Kapoor M, Hoondal GS (2000) Enhanced production of thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol 27:459–466

    Article  PubMed  CAS  Google Scholar 

  32. Madruga S, Camara S (2000) The chemical composition of Multimistura as a food supplement. Food Biochem 68:41–44

    Article  CAS  Google Scholar 

  33. Abou-zeid A, Baghlaf A, Khan J, Makhashin S (1983) Utilization of date seeds and cheese whey in production of citric acid by Candida lipolytica. Agric Wastes 8:131–142

    Article  CAS  Google Scholar 

  34. Besbe S, Blecker C, Deroanne C, Drira N, Attia H (2004) Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chem 84:577–584

    Article  CAS  Google Scholar 

  35. Aldhaheri A, Aldhadrami G, Aboalnaga N, Wasfi I, Elridi M (2004) Cemical composition of date pits and reproductive hormonal status of rats fed date pits. Food Chem 86:93–97

    Article  CAS  Google Scholar 

  36. Ikasari L, Mitchell DA (1994) Protease production by Rhizopus oligosporus in solid-state fermentation. World J Microbiol Biotechnol 10:320–324

    Article  CAS  Google Scholar 

  37. Puri S, Beg QK, Gupta R (2002) Optimization of alkalin protease production from Bacillus sp. by response surface methodology. Curr Microbiol 44:286–290

    Article  PubMed  CAS  Google Scholar 

  38. Aikat K, Bhattacharyya BC (2000) Protease extraction in solid state fermentation of wheat bran by a local strain of Rhizopus oryzae and growth studies by the soft gel technique. Process Biochem 35:907–914

    Article  CAS  Google Scholar 

  39. Carlsen M, Nielsen J, Villadsen J (1996) Growth and α-amylase production by A. oryzae during conditions cultivations. J Biotechnol 45:81–93

    Article  CAS  Google Scholar 

  40. Ramesh M, Lonsane B (1990) Ability of a solid state fermentation technique to significantly minimize catabolic repression of α-amylase production by Bacillus licheniformis M27. Appl Microbiol Biotechnol 35:591–593

    Google Scholar 

  41. Nishio N, Tai K, Nagai S (1979) Hydrolase production by Aspergillus niger in solid state cultivation. Eur J Appl Microbiol Biotechnol 8:263–270

    Article  CAS  Google Scholar 

  42. Germano S, Pandey A, Osaka CA, Rocha SN, Soccol CR (2003) Characterisation and stability of proteases from Penicillium sp. produced by solid-state fermentation. Enzyme Microb Technol 32:246–251

    Article  CAS  Google Scholar 

  43. Yang S (1996) Antibiotic production of cellulosic waste with solid state fermentation by Streptomyces. WREC, pp 976–979

  44. Balakrishna K, Pandey A (1996) Production of biologically active secondary metabolites in solid state fermentation. J Sci Ind Res 55:365–372

    Google Scholar 

  45. Ellaiah P, Adinarayana K, Bhavani Y, Padjama P, Srinivasulu B (2002) Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem 38:615–620

    Article  CAS  Google Scholar 

  46. Carrizales V, Rodriguez H, Sardina I (1981) Determination of specific growth rate of molds as semi solid cultures. Biotechnol Bioeng 23:321–333

    Article  Google Scholar 

  47. Hesseltine CW (1979) Solid-state fermentation: an overview. Int Biodeterior 23:79–89

    Article  Google Scholar 

  48. Adinarayana K, Ellaiah P, Siva Prasad D (2003) Purification and partial characterization of Thermostable Serine Alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS Pharm Sci Technol 4:1–9

    Article  Google Scholar 

  49. Pandey A (1992) Recent developments in solid-state fermentation. Process Biochem 27:109–117

    Article  CAS  Google Scholar 

  50. Rainbauet M, Alazrd D (1980) Culture method to study fungal growth in solid state fermentation. Eur J Appl Microbiol Biotechnol 9:199–209

    Article  Google Scholar 

  51. Krishna C (2005) Solid-State Fermentation Systems—An Overview. Crit Rev Biotechnol 25:1–30

    Article  PubMed  CAS  Google Scholar 

  52. Moon SH, Parulekar SJ (1991) A parametric study of protease production in batch and fed-batch cultures of Bacillus firmus. Biotechnol Bioeng 37:467–483

    Article  PubMed  CAS  Google Scholar 

  53. Larroche C (1996) Microbial growth and sporulation behaviour in solid state fermentation. J Sci Ind Res 55:408–423

    CAS  Google Scholar 

  54. Chakraborty R, Srinivasan M, Sarkar SK, Raghvan KV (1995) Production of acid protease by a new Aspergillus niger by solid substrate fermentation. J Microbiol Biotechnol 10:17–30

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Ezzedine Aouani for valuable discussion and critical reading of the manuscript. This work was supported by the “Ministère de l’enseignement supérieur, de la recherche scientifique et de la technologie” of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadeer Lazim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazim, H., Mankai, H., Slama, N. et al. Production and optimization of thermophilic alkaline protease in solid-state fermentation by Streptomyces sp. CN902. J Ind Microbiol Biotechnol 36, 531–537 (2009). https://doi.org/10.1007/s10295-008-0523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0523-6

Keywords

Navigation