Skip to main content
Log in

Characterization of antilisterial bacteriocins produced by Enterococcus faecium and Enterococcus durans isolates from Hispanic-style cheeses

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Enterococci are often identified as constituents of the indigenous microflora from raw milk artisanal cheeses and are believed to contribute to the unique organoleptic qualities of these products. Many strains of enterococci are also known to produce antimicrobial peptides, enterocins, which may prevent the growth of certain food-born pathogens. In this study 33 enterococcal isolates from Hispanic-style cheeses were screened for the production of bacteriocins. Of the 33 isolates, 5 Enterococcus faecium and 1 Enterococcus durans isolates inhibited the growth of Listeria spp. The antilisterial activity was lost after treatment with pepsin, trypsin, pronase, proteinase K and α-chymotrypsin suggesting the active component was a protein or peptide. The active compounds were heat stable and had molecular weights between 4 and 8 kDa, which is characteristic of Class II enterocins. A PCR screen showed that four E. faecium isolates contained nucleic acid sequences for multiple enterocins. Isolate H41K contained entA and entP; and isolates H51Ca, H51Cb and H41B contained entA, entP and entL50AB, with H41B also containing entB. All PCR tests performed were negative for E. faecium isolate H41D, suggesting the production of a novel enterocin. The isolates were also screened for susceptibility to antibiotics, with only two showing low-level resistance to vancomycin (8 μg ml−l). However, three isolates were highly resistant to both tetracycline and kanamycin, with two of the isolates also showing high resistance to erythromycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alvarado C, Garcia-Almendarez BE, Martin SE, Regalado C (2005) Anti-Listeria monocytogenes bacteriocin-like inhibitory substances from Enterococcus faecium UQ31 isolated from artisan Mexican-style cheese. Curr Microbiol 51:110–115. doi:10.1007/s00284-005-4549-y

    Article  PubMed  CAS  Google Scholar 

  2. Audisio MC, Oliver G, Apella MC (2000) Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella pullorum. J Food Prot 63:1333–1337

    Google Scholar 

  3. Aymerich T, Holo H, Havarstein LS, Hugas M, Garriga M, Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682

    PubMed  CAS  Google Scholar 

  4. Batdorj B, Dalgalarrondo M, Choiset Y, Pedroche J, Metro F, Prevost H, Chobert JM, Haertle T (2006) Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J Appl Microbiol 101:837–848. doi:10.1111/j.1365-2672.2006.02966.x

    Article  PubMed  CAS  Google Scholar 

  5. Bhunia AK, Johnson MC, Ray B (1987) Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Ind Microbiol 2:319–322. doi:10.1007/BF01569434

    Article  CAS  Google Scholar 

  6. Bonten MJ, Willems R, Weinstein RA (2001) Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect Dis 1:314–325. doi:10.1016/S1473-3099(01)00145-1

    Article  PubMed  CAS  Google Scholar 

  7. Booth MC, Bogie CP, Sahl HG, Siezen RJ, Hatter KL, Gilmore MS (1996) Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol 21:1175–1184. doi:10.1046/j.1365-2958.1996.831449.x

    Article  PubMed  CAS  Google Scholar 

  8. Bricker AL, Van Hekken DL, Guerrero VM, Gardea AA (2005) Microflora isolated from Mexican Mennonite-style cheeses. Food Prot Trends 25:637–640

    Google Scholar 

  9. Casaus P, Nilsen T, Cintas LM, Nes IF, Hernandez PE, Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143(Pt 7):2287–2294

    Article  PubMed  CAS  Google Scholar 

  10. Centeno JA, Menendez S, Rodriguez-Otero JL (1996) Main microbial flora present as natural starters in Cebreiro raw cow’s-milk cheese (northwest Spain). Int J Food Microbiol 33:307–313. doi:10.1016/0168-1605(96)01165-8

    Article  PubMed  CAS  Google Scholar 

  11. Cintas LM, Rodriguez JM, Fernandez MF, Sletten K, Nes IF, Hernandez PE, Holo H (1995) Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol 61:2643–2648

    PubMed  CAS  Google Scholar 

  12. Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330

    PubMed  CAS  Google Scholar 

  13. Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Havarstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994

    PubMed  CAS  Google Scholar 

  14. Cintas LM, Casaus P, Herranz C, Havarstein LS, Holo H, Hernandez PE, Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 182:6806–6814. doi:10.1128/JB.182.23.6806-6814.2000

    Article  PubMed  CAS  Google Scholar 

  15. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20. doi:10.1016/S0168-1605(01)00560-8

    Article  PubMed  CAS  Google Scholar 

  16. Clinical and Laboratory Standards Institute (2006) Performance standards for antimicrobial susceptibilty testing: 17th informational supplement. CLSI Document M100–17. CLSI, Wayne, pp 32–38

    Google Scholar 

  17. Coderre PE, Somkuti GA (1999) Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. Curr Microbiol 39:295–301. doi:10.1007/s002849900462

    Article  PubMed  CAS  Google Scholar 

  18. Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071. doi:10.1016/j.idairyj.2005.10.026

    Article  CAS  Google Scholar 

  19. Doucet-Populaire F, Trieu-Cuot P, Andremont A, Courvalin P (1992) Conjugal transfer of plasmid DNA from Enterococcus faecalis to Escherichia coli in digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother 36:502–504

    PubMed  CAS  Google Scholar 

  20. Ennahar S, Aoude-Werner D, Assobhei O, Hasselmann C (1998) Antilisterial activity of enterocin 81, a bacteriocin produced by Enterococcus faecium WHE 81 isolated from cheese. J Appl Microbiol 85:521–526. doi:10.1046/j.1365-2672.1998.853528.x

    Article  PubMed  CAS  Google Scholar 

  21. Floriano B, Ruiz-Barba JL, Jimenez-Diaz R (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl Environ Microbiol 64:4883–4890

    PubMed  CAS  Google Scholar 

  22. Foulquie Moreno MR, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L (2003) Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J Appl Microbiol 94:214–229. doi:10.1046/j.1365-2672.2003.01823.x

    Article  PubMed  CAS  Google Scholar 

  23. Franz CM, van Belkum MJ, Holzapfel WH, Abriouel H, Galvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310. doi:10.1111/j.1574-6976.2007.00064.x

    Article  PubMed  CAS  Google Scholar 

  24. Giraffa G (1995) Enterococcal bacteriocins: their potential as antilisteria factors in dairy technology. Food Microbiol 12:291–299. doi:10.1016/S0740-0020(95)80109-X

    Article  CAS  Google Scholar 

  25. Jin LZ, Marquardt RR, Zhao X (2000) A strain of Enterococcus faecium (18C23) inhibits adhesion of enterotoxigenic Escherichia coli K88 to porcine small intestine mucus. Appl Environ Microbiol 66:4200–4204. doi:10.1128/AEM.66.10.4200-4204.2000

    Article  PubMed  CAS  Google Scholar 

  26. Klein G, Pack A, Reuter G (1998) Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl Environ Microbiol 64:1825–1830

    PubMed  CAS  Google Scholar 

  27. Klein G (2003) Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88:123–131. doi:10.1016/S0168-1605(03)00175-2

    Article  PubMed  Google Scholar 

  28. Lasagno M, Beoleito V, Sesma F, Raya R, Font de Valdez G, Eraso A (2002) Selection of bacteriocin producer strains of lactic acid bacteria from a dairy environment. New Microbiol 25:37–44

    PubMed  CAS  Google Scholar 

  29. Lund B, Edlund C (2001) Probiotic Enterococcus faecium strain is a possible recipient of the vanA gene cluster. Clin Infect Dis 32:1384–1385. doi:10.1086/319994

    Article  PubMed  CAS  Google Scholar 

  30. MacDonald PD, Whitwam RE, Boggs JD, MacCormack JN, Anderson KL, Reardon JW, Saah JR, Graves LM, Hunter SB, Sobel J (2005) Outbreak of listeriosis among Mexican immigrants as a result of consumption of illicitly produced Mexican-style cheese. Clin Infect Dis 40:677–682. doi:10.1086/427803

    Article  PubMed  Google Scholar 

  31. Marino M, Maifreni M, Rondinini G (2003) Microbiological characterization of artisanal Montasio cheese: analysis of its indigenous lactic acid bacteria. FEMS Microbiol Lett 229:133–140. doi:10.1016/S0378-1097(03)00816-4

    Article  PubMed  CAS  Google Scholar 

  32. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria––a review. Int J Food Microbiol 105:281–295. doi:10.1016/j.ijfoodmicro.2005.03.008

    Article  PubMed  CAS  Google Scholar 

  33. Morovsky M, Pristas P, Javorsky P, Nes IF, Holo H (2001) Isolation and characterization of enterocin BC25 and occurrence of the entA gene among ruminal gram-positive cocci. Microbiol Res 156:133–138. doi:10.1078/0944-5013-00090

    Article  PubMed  CAS  Google Scholar 

  34. Park SH, Itoh K, Fujisawa T (2003) Characteristics and identification of enterocins produced by Enterococcus faecium JCM 5804T. J Appl Microbiol 95:294–300. doi:10.1046/j.1365-2672.2003.01975.x

    Article  PubMed  CAS  Google Scholar 

  35. Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G, Teuber M (1997) Antibiotic resistance spread in food. Nature 389:801–802. doi:10.1038/39767

    Article  PubMed  CAS  Google Scholar 

  36. Renye JAJ, Somkuti GA, Vallejo-Cordoba B, Van Hekken DL, Gonzalez-Cordova AF (2008) Characterization of the microflora isolated from queso fresco made from raw and pasteurized milk. J Food Saf 28:59–75

    Google Scholar 

  37. Rice LB, Carias LL (1998) Transfer of Tn5385––a composite, multiresistance chromosomal element from Enterococcus faecalis. J Bacteriol 180:714–721

    PubMed  CAS  Google Scholar 

  38. Sarantinopoulos P, Andrighetto G, Georgalaki MD, Rea MC, Lombardi A, Cogan TM, Kalantzopoulos G, Tsakalidou E (2001) Biochemical properties of enterococci relevant to their technological performance. Int Dairy J 11:621–647. doi:10.1016/S0958-6946(01)00087-5

    Article  CAS  Google Scholar 

  39. Sarantinopoulos P, Kalantzopoulos G, Tsakalidou E (2002) Effect of Enterococcus faecium on microbiological, physicochemical and sensory characteristics of Greek Feta cheese. Int J Food Microbiol 76:93–105. doi:10.1016/S0168-1605(02)00021-1

    Article  PubMed  CAS  Google Scholar 

  40. Shrago AW, Dobrogosz WJ (1988) Conjugal transfer of group B streptococcal plasmids and co-mobilization of Escherichia coli-Streptococcus shuttle plasmids to Lactobacillus plantarum. Appl Environ Microbiol 54:824–826

    PubMed  CAS  Google Scholar 

  41. Somkuti GA, Steinberg DH (1979) Adaptability of Streptococcus thermophilus to lactose and galactose. J Food Prot 42:885–887

    CAS  Google Scholar 

  42. Templer SP, Baumgartner A (2007) Enterococci from Appenzeller and Schabziger raw milk cheese: antibiotic resistance, virulence factors, and persistence of particular strains in the products. J Food Prot 70:450–455

    PubMed  CAS  Google Scholar 

  43. Teuber M (1999) Spread of antibiotic resistance with food-borne pathogens. Cell Mol Life Sci 56:755–763. doi:10.1007/s000180050022

    Article  PubMed  CAS  Google Scholar 

  44. Tsakalidou E, Manolopoulou E, Tsilibari V, Georgalaki M, Kalantzopoulos G (1993) Esterolytic activities of Enterococcus durans and Enterococcus faecium strains isolated from Greek cheese. Neth Milk Dairy J 47:145–150

    Google Scholar 

  45. Wessels D, Jooste PJ, Mostert JF (1990) Technologically important characteristics of Enterococcus isolates from milk and dairy products. Int J Food Microbiol 10:349–352. doi:10.1016/0168-1605(90)90082-G

    Article  PubMed  CAS  Google Scholar 

  46. Yanagida F, Chen Y, Onda T, Shinohara T (2005) Durancin L28-1A, a new bacteriocin from Enterococcus durans L28-1, isolated from soil. Lett Appl Microbiol 40:430–435. doi:10.1111/j.1472-765X.2005.01693.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank A. Gardea and B. Vallejo-Cordoba from the Centro de Investigacion en Alimentacion y Desarrollo (CIAD) for providing the cheese samples. We would also like to thank A. Nunez, D. Needleman and S. Iandola, USDA-ARS-ERRC, for their technical assistance with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Renye Jr.

Additional information

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renye, J.A., Somkuti, G.A., Paul, M. et al. Characterization of antilisterial bacteriocins produced by Enterococcus faecium and Enterococcus durans isolates from Hispanic-style cheeses. J Ind Microbiol Biotechnol 36, 261–268 (2009). https://doi.org/10.1007/s10295-008-0494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0494-7

Keywords

Navigation