Skip to main content
Log in

Modulation of tolerance to Cr(VI) and Cr(VI) reduction by sulfate ion in a Candida yeast strain isolated from tannery wastewater

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The main aim of this study was to investigate the influence of the sulfate ion on the tolerance to Cr(VI) and the Cr(VI) reduction in a yeast strain isolated from tannery wastewater and identified as Candida sp. FGSFEP by the D1/D2 domain sequence of the 26S rRNA gene. The Candida sp. FGSFEP strain was grown in culture media with sulfate concentrations ranging from 0 to 23.92 mM, in absence and presence of Cr(VI) [1.7 and 3.3 mM]. In absence of Cr(VI), the yeast specific growth rate was practically the same in every sulfate concentration tested, which suggests that sulfate had no stimulating or inhibiting effect on the yeast cell growth. In contrast, at the two initial Cr(VI) concentrations assayed, the specific growth rate of Candida sp. FGSFEP rose when sulfate concentration increased. Likewise, the greater efficiencies and volumetric rates of Cr(VI) reduction exhibited by Candida sp. FGSFEP were obtained at high sulfate concentrations. Yeast was capable of reducing 100% of 1.7 mM Cr(VI) and 84% of 3.3 mM Cr(VI), with rates of 0.98 and 0.44 mg Cr(VI)/L h, with 10 and 23.92 mM sulfate concentrations, respectively. These results indicate that sulfate plays an important role in the tolerance to Cr(VI) and Cr(VI) reduction in Candida sp. FGSFEP. These findings may have significant implications in the biological treatment of Cr(VI)-laden wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acevedo-Aguilar FJ, Espino-Saldaña AE, Leon-Rodriguez IL, Rivera-Cano ME, Avila-Rodriguez M, Wrobel K, Wrobel K, Lappe P, Ulloa M, Gutiérrez-Corona JF (2006) Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Can J Microbiol 52:809–815

    Article  PubMed  CAS  Google Scholar 

  2. Bae WC, Kang TG, Kang IK, Won YJ, Jeong BC (2000) Reduction of hexavalent chromium by Escherichia coli ATCC 33456 in batch and continuous cultures. J Microbiol 38:36–39

    CAS  Google Scholar 

  3. Bopp LH, Ehrlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431

    Article  CAS  Google Scholar 

  4. Branco R, Alpoim MC, Morais PV (2004) Ochrobactrum tritici strain 5bvI1—characterization of a Cr(VI)-resistant and Cr(VI)-reducing strain. Can J Microbiol 50:697–703

    Article  PubMed  CAS  Google Scholar 

  5. Chardin B, Dolla A, Chaspoul F, Fardeau ML, Gallice P, Bruschi M (2002) Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria. Appl Microbiol Biotechnol 60:352–360

    Article  PubMed  CAS  Google Scholar 

  6. Cheung KH, Gu JD (2003) Reduction of chromate (CrO 2-4 ) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52:1523–1529

    Article  PubMed  CAS  Google Scholar 

  7. Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59:8–15

    Article  CAS  Google Scholar 

  8. Clesceri LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  9. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  10. DeFlora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds: a review. Mutat Res 238:99–172

    CAS  Google Scholar 

  11. DeLeo PC, Ehrlich HL (1994) Reduction of hexavalent chromium by Pseudomonas fluorescens LB300 in batch and continuous cultures. Appl Microbiol Biotechnol 40:756–759

    Article  CAS  Google Scholar 

  12. Dmitrenko GN, Konovalova VV, Shum OA (2003) The reduction of Cr(VI) by bacteria of the genus Pseudomonas. Microbiology 72:327–330

    Article  CAS  Google Scholar 

  13. Francisco R, Alpoim MC, Morais PV (2002) Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge. J Appl Microbiol 92:837–843

    Article  PubMed  CAS  Google Scholar 

  14. Fujie K, Hu HY, Huang X, Tanaka Y, Urano K, Ohtake H (1996) Optimal operation of bioreactor system developed for the treatment of chromate wastewater using Enterobacter cloacae HO-1. Water Sci Technol 33:173–182

    Article  Google Scholar 

  15. Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420

    Article  PubMed  CAS  Google Scholar 

  16. Garbisu C, Alkorta I, Llama MJ, Serra JL (1998) Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9:133–141

    Article  PubMed  CAS  Google Scholar 

  17. Gouda MK (2000) Studies on chromate reduction by three Aspergillus species. Fresen Environ Bull 9:799–808

    CAS  Google Scholar 

  18. Guertin J (2005) Toxicity and health effects of chromium (all oxidation states). In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium(VI) handbook. CRC Press, Boca Raton, pp 215–234

    Google Scholar 

  19. Hach Company (ed) (2002) Hach water analysis handbook, 4th edn. Hach Company, Loveland

  20. Hawley EL, Deeb RA, Kavanaugh MC, Jacobs JA (2005) Treatment technologies for chromium(VI). In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium(VI) handbook. CRC Press, Boca Raton, pp 275–309

    Google Scholar 

  21. Humphries AC, Macaskie LE (2002) Reduction of Cr(VI) by Desulfovibrio vulgaris and Microbacterium sp. Biotechnol Lett 24:1261–1267

    Article  CAS  Google Scholar 

  22. Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    PubMed  CAS  Google Scholar 

  23. Jacobs JA, Testa SM (2005) Overview of chromium(VI) in the environment: background and history. In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium(VI) handbook. CRC Press, Boca Raton, pp 1–21

    Google Scholar 

  24. Juvera-Espinosa J, Morales-Barrera L, Cristiani-Urbina E (2006) Isolation and characterization of a yeast strain capable of removing Cr(VI). Enzyme Microbial Technol 40:114–121

    Article  CAS  Google Scholar 

  25. Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni CA (1999) Critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46

    Article  CAS  Google Scholar 

  26. Komori K, Rivas A, Toda K, Ohtake H (1989) Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol Bioeng 35:951–954

    Article  Google Scholar 

  27. Kurtzman CP, Fell JW (1998) The yeast, a taxonomic study. Elsevier Science B.V., Amsterdam, p 367

    Google Scholar 

  28. Liu YG, Xu WH, Zeng GM, Li X, Gao H (2006) Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–1986

    Article  CAS  Google Scholar 

  29. Llovera S, Bonet R, Simon-Pujol MD, Congregado F (1993) Effect of culture medium ions on chromate reduction by resting cells of Agrobacterium radiobacter. Appl Microbiol Biotechnol 39:424–426

    Article  CAS  Google Scholar 

  30. Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  PubMed  CAS  Google Scholar 

  31. Lofroth G, Ames BN (1978) Mutagenicity of inorganic compounds in Salmonella typhimurium: arsenic, chromium and selenium. Mutat Res 53:65–66

    Google Scholar 

  32. Losi ME, Amrhein C, Frankenberger WT (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 136:91–121

    PubMed  CAS  Google Scholar 

  33. Lovley DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c 3 cytochrome. Appl Environ Microbiol 60:726–728

    PubMed  CAS  Google Scholar 

  34. McGrath SP, Smith S (1990) Chromium and nickel. In: Alloway BJ (ed) Heavy metals in soils. Wiley, New York, pp 125–150

    Google Scholar 

  35. Mergeay M (1995) Heavy metal resistances in microbial ecosystems. In: Akkermans ADL, van Elsas JD, De Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Press, Dordrecht, pp 1–17

    Google Scholar 

  36. Middleton SS, Latmani RB, Mackey MR, Ellisman MH, Tebo BM, Criddle CS (2003) Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol Bioeng 83:627–637

    Article  PubMed  CAS  Google Scholar 

  37. Mohan D, Pittman CU (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137:762–811

    Article  PubMed  CAS  Google Scholar 

  38. Morales-Barrera L, Cristiani-Urbina E (2006) Removal of hexavalent chromium by Trichoderma viride in an airlift bioreactor. Enzyme Microbial Technol 40:107–113

    Article  CAS  Google Scholar 

  39. Morales-Barrera L, Cristiani-Urbina E (2008) Hexavalent chromium removal by a Trichoderma inhamatum fungal strain isolated from tannery effluent. Water Air Soil Pollut 187:327–336

    Article  CAS  Google Scholar 

  40. Morales-Barrera L, Guillén-Jiménez FM, Ortiz-Moreno A, Villegas-Garrido TL, Sandoval-Cabrera A, Hernández-Rodríguez CH, Cristiani-Urbina E (2008) Isolation, identification and characterization of a Hypocrea tawa strain with high Cr(VI) reduction potential. Biochem Eng J 40:284–292

    Article  CAS  Google Scholar 

  41. Muter O, Patmalnieks A, Rapoport A (2001) Interrelations of the yeast Candida utilis and Cr(VI): metal reduction and its distribution in the cell and medium. Process Biochem 36:963–970

    Article  CAS  Google Scholar 

  42. Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856

    PubMed  CAS  Google Scholar 

  43. Pal N (1997) Reduction of hexavalent chromium to trivalent chromium by Phanerochaete chrysosporium. In: Alleman BC, Leeson A (eds) In situ and on-site bioremediation, vol 2. Batelle Press, Columbus, pp 511–517

    Google Scholar 

  44. Park D, Yun YS, Park JM (2005) Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem 40:2559–2565

    Article  CAS  Google Scholar 

  45. Park D, Yun YS, Ahn CK, Park JM (2007) Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere 66:939–946

    Article  PubMed  CAS  Google Scholar 

  46. Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57:257–261

    Article  PubMed  CAS  Google Scholar 

  47. Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol. Biotechnol Lett 23:61–65

    Article  CAS  Google Scholar 

  48. Pazouki M, Keyanpour-Rad M, Shafie SH, Shahhoseini SH (2007) Efficiency of Penicillium chrysogenum PTCC 5037 in reducing low concentration of chromium hexavalent in a chromium electroplating plant wastewater. Bioresour Technol 98:2116–2122

    Article  PubMed  CAS  Google Scholar 

  49. Pepi M, Baldi F (1992) Modulation of chromium(VI) toxicity by organic and inorganic sulfur species in yeasts from industrial wastes. BioMetals 5:179–185

    Article  PubMed  CAS  Google Scholar 

  50. Philip L, Iyengar L, Venkobachar C (1998) Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng ASCE 124:1165–1170

    Article  CAS  Google Scholar 

  51. QuiIntana M, Curutchet G, Donati E (2001) Factors affecting chromium(VI) reduction by Thiobacillus ferrooxidans. Biochem Eng J 9:11–15

    Article  CAS  Google Scholar 

  52. Ramírez-Ramírez R, Calvo-Méndez C, Ávila-Rodríguez M, Lappe P, Ulloa M, Vázquez-Juárez R, Gutiérrez-Corona JF (2004) Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie van Leeuwenhoek 85:63–68

    Article  PubMed  Google Scholar 

  53. Shen H, Wang YT (1994) Biological reduction of chromium by E. coli. J Environ Eng 120:560–572

    Article  CAS  Google Scholar 

  54. Stanin FT (2005) The transport and fate of chromium(VI) in the environment. In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium(VI) handbook. CRC Press, Boca Raton, pp 165–214

    Google Scholar 

  55. Testa SM (2005) Sources of chromium contamination in soil and groundwater. In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium(VI) handbook. CRC Press, Boca Raton, pp 143–163

    Google Scholar 

  56. Wang YT, Shen H (1995) Bacterial reduction of hexavalent chromium. J Ind Microbiol 14:159–163

    Article  PubMed  CAS  Google Scholar 

  57. Wang YT, Shen H (1997) Modelling Cr(VI) reduction by pure bacterial cultures. Water Res 31:727–732

    Article  CAS  Google Scholar 

  58. Wang YT, Xiao C (1995) Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res 29:2467–2474

    Article  CAS  Google Scholar 

  59. Wang YT (2000) Microbial reduction of chromate. In: Lovley DR (ed) Environmental microbe–metal interactions. ASM Press, Washington, DC, pp 225–235

    Google Scholar 

  60. Zakaria ZA, Zakaria Z, Surif S, Ahmad WA (2007) Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J Hazard Mater 146:30–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C. H. H.-R. and E. C.-U. are fellow holders of a grant from the Comisión de Operación y Fomento de Actividades Académicas, Instituto Politécnico Nacional, Mexico City, Mexico. The authors gratefully acknowledge the financial support provided by the Secretaría de Investigación y Posgrado, IPN. The CONACyT awarded a graduate scholarship to one of the co-authors (F. M. G.-J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Cristiani-Urbina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillén-Jiménez, F.d.M., Morales-Barrera, L., Morales-Jiménez, J. et al. Modulation of tolerance to Cr(VI) and Cr(VI) reduction by sulfate ion in a Candida yeast strain isolated from tannery wastewater. J Ind Microbiol Biotechnol 35, 1277–1287 (2008). https://doi.org/10.1007/s10295-008-0425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0425-7

Keywords

Navigation