Skip to main content
Log in

Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, Exiguobacterium sp. GS1

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Pollution of terrestrial surfaces and aquatic systems by hexavalent chromium, Cr(VI), is a worldwide public health problem. A chromium resistant bacterial isolate identified as Exiguobacterium sp. GS1 by 16S rRNA gene sequencing displayed high rate of removal of Cr(VI) from water. Exiguobacterium sp. GS1 is 99% identical to Exiguobacterium acetylicum. The isolate significantly removed Cr(VI) at both high and low concentrations (1–200 μg mL−1) within 12 h. The Michaelis–Menten K m and V max for Cr(VI) bioremoval were calculated to be 141.92 μg mL−1 and 13.22 μg mL−1 h−1, respectively. Growth of Exiguobacterium sp. GS1 was indifferent at 1–75 μg mL−1 Cr(VI) in 12 h. At initial concentration of 8,000 μg L−1, Exiguobacterium sp. GS1 displayed rapid bioremoval of Cr(VI) with over 50% bioremoval in 3 h and 91% bioremoval in 8 h. Kinetic analysis of Cr(VI) bioremoval rate revealed zero-order in 8 h. Exiguobacterium sp. GS1 grew and significantly reduced Cr(VI) in cultures containing 1–9% salt indicating high salt tolerance. Similarly the isolate substantially reduced Cr(VI) over a wide range of temperature (18–45  °C) and initial pH (6.0–9.0). The T opt and initial pHopt were 35–40  °C and 7–8, respectively. Exiguobacterium sp. GS1 displayed a great potential for bioremediation of Cr(VI) in diverse complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arıca MY, Bayramoglu G (2005) Cr(VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajor-caju: preparation and kinetic characterization. Physicochem Eng A253:203–211

    Article  CAS  Google Scholar 

  2. Bartlett RJ, James BR (1996) Chromium. In: Spark DL (ed) Methods of soil analysis Part 3, SSSA Book Series 5, SSSA, Madison, pp 683–701

  3. Bayramoglu G, Celik G, Yalcin E, Yilmaz M, Arica MY (2005) Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium. J Hazard Mater B119:219–229

    Article  CAS  Google Scholar 

  4. Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2005) Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate. Appl Soil Ecol 29:193–202

    Article  Google Scholar 

  5. Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2004) Hexavalent chromium reduction by immobilized cells and cell-free extract of Bacillus sp. ES 29. Bioremediation J 8:23–30

    Article  CAS  Google Scholar 

  6. Camargo FA, Bento FM, Okeke BC, Frankenberger WT (2003) Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32:1228–1233

    PubMed  CAS  Google Scholar 

  7. Camargo FA, Bento FM, Okeke BC, Frankenberger WT (2004) Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res 97:183–194

    Article  PubMed  CAS  Google Scholar 

  8. Camargo FA, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573

    Article  PubMed  CAS  Google Scholar 

  9. Campos J, Martinez-Pacheco M, Cervantes C (1995) Hexavalent-chromium reduction by a chromate-resistant Bacillus sp. strain. Antonie Leeuwenhoek 68:203–208

    Article  PubMed  CAS  Google Scholar 

  10. Cheung KH, Gu JD (2003) Reduction of chromate (CrO 24 ) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52:1523–1529

    Article  PubMed  CAS  Google Scholar 

  11. Chung J, Nerenberg R, Rittmann BE (2006) Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor. Wat Res 40:1634–1642

    Article  CAS  Google Scholar 

  12. Clark DP (1994) Chromate reductase activity of Enterobacter aerogenes is induced by nitrite. FEMS Microbiol Lett 122:233–238

    Article  PubMed  CAS  Google Scholar 

  13. Clifford D, Liu X (1993) Ion exchange for nitrate removal. Amer Water Works Assoc J 85:135–143

    CAS  Google Scholar 

  14. Cummings DE, Fendorf S, Singh N, Sani RK, Peyton BM, Magnuson TS (2007) Reduction of Cr(VI) under acidic conditions by the facultative Fe(lll)-reducing bacterium Acidiphilium cryptum. Environ Sci Technol 41:146–152

    Article  PubMed  CAS  Google Scholar 

  15. Das S, Chandra AL (1990) Chromate reduction in Streptomyces. Experientia 46:731–733

    Article  PubMed  CAS  Google Scholar 

  16. Dermou E, Velissariou A, Xenos D, Vayenas DV (2005) Biological chromium(VI) reduction using a trickling filter. J Hazard Mater 126:1–3

    Article  CAS  Google Scholar 

  17. Fruhling A, Schumann P, Hippe H, Straubler B, Stackebrandt E (2002) Exiguobacterium undae sp. nov. and Exiguobacterium antarcticum sp. nov. Int J Syst Evol Microbiol 52:1171–1176

    Article  PubMed  CAS  Google Scholar 

  18. Guha H, Jayachandran K, Maurrasse F (2001) Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions. Environ Pollut 115:209–218

    Article  PubMed  CAS  Google Scholar 

  19. Gvozdyak PI, Mogilevich NF, Ryl’skii AF, Grishchenko NI (1987) Reduction of hexavalent chromium by collection of strains of bacteria. Microbiologia 55:770–773

    Google Scholar 

  20. Iyer A, Mody K, Jha B (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull 49:974–977

    Article  PubMed  CAS  Google Scholar 

  21. James BR, Bartlett RJ (1984) Plant–soil interactions of chromium. J Environ Qual 13:67–70

    CAS  Google Scholar 

  22. Komori KA, Rivas A, Toda K, Ohtake H (1990) A method for removal of toxic chromium using dialysis-sac cultures of a chlomate-reducing strain of Enterobacter cloacae. Appl Microbiol Biotechnol 33:117–119

    Article  PubMed  CAS  Google Scholar 

  23. Krishna KR, Philip L (2005) Bioremediation of Cr(VI) in contaminated soils. J Hazard Mater B121:109–117

    Article  CAS  Google Scholar 

  24. Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    CAS  Google Scholar 

  25. Lane D (1991) 16S/23S sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, NY

    Google Scholar 

  26. Laxman RS, More S (2002) Reduction of hexavalent chromium by Streptomyces griseus. Miner Eng 15:831–837

    Article  CAS  Google Scholar 

  27. Lee DC, Park CJ, Yang JE, Jeong YH, Rhee HI (2000) Screening of hexavalent chromium biosorbent from marine algae. Appl Microbiol Biotechnol 54:445–448

    Article  PubMed  CAS  Google Scholar 

  28. Logan BE, Wu J, Unz RF (2001) Biological perchlorate reduction in high-salinity solutions. Wat Res 35:3034–3038

    Article  CAS  Google Scholar 

  29. Losi ME, Amrhein C, Frankenberger WT (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 36:91–121

    Google Scholar 

  30. Losi ME, Amrhein C, Frankenberger WT (1994) Bioremediation of chromate-contaminated groundwater by reduction and precipitation in surface soils. J Environ Qual 23:1141–1150

    Article  CAS  Google Scholar 

  31. Losi ME, Frankenberger WT (1994) Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant. Water Air Soil Pollut 74:405–413

    CAS  Google Scholar 

  32. Lovely DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60:726–728

    Google Scholar 

  33. Mathews CK, Van Holde KE, Ahern KG (1999) Biochemistry, 3rd edn. Benjamin-Cummings Pub Co, San Francisco CA

    Google Scholar 

  34. MyRDP Release 9.50 (http://rdp.cme.msu.edu/misc/rel9info.jsp)

  35. Oh YS, Choi SC (1997) Reduction of hexavalent chromium by Pseudomonas aeruginosa HP014. J Microbiol (Microbiol Soc Korea) 35:25–29

    CAS  Google Scholar 

  36. Okeke BC, Giblin T, Frankenberger WT (2002) Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ Pollut 118:357–363

    Article  PubMed  CAS  Google Scholar 

  37. Okeke BC, Frankenberger WT (2003) Biodegradation of methyl tertiary butyl ether (MTBE) by a bacterial enrichment consortia and its monoculture isolates. Microbiol Res 158:99–106

    Article  PubMed  CAS  Google Scholar 

  38. Okeke BC, Laymon J, Crenshaw S, Oji C (2008) Environmental and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI) resistant consortium. Biol Trace Elem Res 123:229–241

    Article  PubMed  CAS  Google Scholar 

  39. Park D, Yun Y-S, Ahn CK, Park JM (2007) Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere 66:939–946

    Article  PubMed  CAS  Google Scholar 

  40. Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Proc Biochem 41:1332–1337

    Article  CAS  Google Scholar 

  41. Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173

    Article  PubMed  CAS  Google Scholar 

  42. Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6:400–414

    Article  PubMed  CAS  Google Scholar 

  43. Vishnivetskaya TA, Siletzky R, Jefferies N, Tiedje JM, Kathariou S (2007) Effect of low temperature and culture media on the growth and freeze-thawing tolerance of Exiguobacterium strains. Cryobiology 54:234–240

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Shakena Crenshaw, Jeffery Laymon, Charles Oji, Mark Losi and Pete Hall. This study was in part supported from Auburn University Montgomery faculty grant-in-aid, the School of Sciences start-up fund and a grant from Ecomat Inc CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedict C. Okeke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okeke, B.C. Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, Exiguobacterium sp. GS1. J Ind Microbiol Biotechnol 35, 1571–1579 (2008). https://doi.org/10.1007/s10295-008-0399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0399-5

Keywords

Navigation