Skip to main content

Advertisement

Log in

A comparison of methods for total community DNA preservation and extraction from various thermal environments

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The widespread use of molecular techniques in studying microbial communities has greatly enhanced our understanding of microbial diversity and function in the natural environment and contributed to an explosion of novel commercially viable enzymes. One of the most promising environments for detecting novel processes, enzymes, and microbial diversity is hot springs. We examined potential biases introduced by DNA preservation and extraction methods by comparing the quality, quantity, and diversity of environmental DNA samples preserved and extracted by commonly used methods. We included samples from sites representing the spectrum of environmental conditions that are found in Yellowstone National Park thermal features. Samples preserved in a non-toxic sucrose lysis buffer (SLB), along with a variation of a standard DNA extraction method using CTAB resulted in higher quality and quantity DNA than the other preservation and extraction methods tested here. Richness determined using DGGE revealed that there was some variation within replicates of a sample, but no statistical difference among the methods. However, the sucrose lysis buffer preserved samples extracted by the CTAB method were 15–43% more diverse than the other treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allen ET, Day AL (1935) Hot springs of the Yellowstone National Park. Carnegie Institution, Washington, DC

    Google Scholar 

  2. Barns SM, et al. (1994) Remarkable archaeal diversity in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91(March):1609–1613 doi:10.1073/pnas.91.5.1609

  3. Braid MD, et al. Testing the UltraClean soil DNA purification kit on a diverse range of soils by PCR amplification of 16S rDNA. In: ASM General Meeting. 1999

  4. Brock TD Thermophilic microorganisms and life at high temperatures. 1978, Springer-Verlag, New York, pp 465

  5. Bryant DA et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526. doi:10.1126/science.1143236

    Article  PubMed  CAS  Google Scholar 

  6. Cary SC et al (1993) Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol Mar Biol Biotechnol 2(1):51–62

    PubMed  CAS  Google Scholar 

  7. Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63(4):1375–1381

    PubMed  CAS  Google Scholar 

  8. Frantzen MAJ et al (1998) Empirical evaluation of preservation methods for faecal DNA. Mol Ecol 7:1423–1428. doi:10.1046/j.1365-294x.1998.00449.x

    Article  PubMed  CAS  Google Scholar 

  9. Fromin N et al (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4(11):634–643. doi:10.1046/j.1462-2920.2002.00358.x

    Article  PubMed  CAS  Google Scholar 

  10. Frostegard A et al (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65(12):5409–5420

    PubMed  CAS  Google Scholar 

  11. Gabor EM, de Vries EJ, Janssen DB (2003) Effecient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44:153–163. doi:10.1016/S0168-6496(02)00462-2

    Article  CAS  Google Scholar 

  12. Garrett RH, Grisham CM (1995) In: Field C (ed) Biochemistry, Saunders College Publishing, Philadelphia

  13. Ghosh D et al (2003) Molecular phylogenetic exploration of bacterial diversity in a Bakreshwar (India) hot spring and culture of Shewanella-related thermophiles. Appl Environ Microbiol 69(7):4332–4336. doi:10.1128/AEM.69.7.4332-4336.2003

    Article  PubMed  CAS  Google Scholar 

  14. Giovannoni SJ et al (1990) Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl Environ Microbiol 56:2572–2575

    PubMed  CAS  Google Scholar 

  15. Haldeman DL et al (1994) Changes in bacteria recoverable from subsurface volcanic rock samples during storage at 4°C. Appl Environ Microbiol 60(8):2697–2703

    PubMed  CAS  Google Scholar 

  16. Harris KJ, Kelley ST, Pace NR (2004) New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70(2):845–849. doi:10.1128/AEM.70.2.845-849.2004

    Article  PubMed  CAS  Google Scholar 

  17. Harry M, Gambier B, Garnier-Sillam E (2000) Soil conservation for DNA preservation for bacterial molecular studies. Eur J Soil Sci 36:51–55

    CAS  Google Scholar 

  18. Herrera A, Cockell CS (2007) Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction. J Microbiol Methods 70:1–12. doi:10.1016/j.mimet.2007.04.005

    Article  PubMed  CAS  Google Scholar 

  19. Hobel CFV et al (2004) Use of low nutrient enrichments to access novel amylase genes in silent diversity of thermophiles. World J Microbiol Biotechnol 20:801–809. doi:10.1007/s11274-004-2623-4

    Article  CAS  Google Scholar 

  20. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    PubMed  CAS  Google Scholar 

  21. Khanna M, Stotzky G (1992) Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl Environ Microbiol 58(6):1930–1939

    PubMed  CAS  Google Scholar 

  22. Kowalchuk GA et al (2007) Finding the needles in the metagenome haystack. Microb Ecol 53:475–485. doi:10.1007/s00248-006-9201-2

    Article  PubMed  Google Scholar 

  23. LaMontagne MG et al (2002) Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J Microbiol Methods 49:255–264. doi:10.1016/S0167-7012(01)00377-3

    Article  PubMed  CAS  Google Scholar 

  24. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

  25. Leuko S et al (2008) Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles 12:301–308. doi:10.1007/s00792-007-0124-8

    Article  PubMed  CAS  Google Scholar 

  26. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516. doi:10.1038/nrmicro1161

    Article  PubMed  CAS  Google Scholar 

  27. Luna GM, Dell’Anno A, Danovaro R (2006) DNA extraction procedure: a critical issue for bacterial diversity assessment in marine sediments. Environ Microbiol 8(2):308–320. doi:10.1111/j.1462-2920.2005.00896.x

    Article  PubMed  CAS  Google Scholar 

  28. Mandrioli M, Borsatti F, Mola L (2006) Factors affecting DNA preservation from museum-collected lepidopteran specimens. Entomol Exp Appl 120(3):239–244. doi:10.1111/j.1570-7458.2006.00451.x

    Article  CAS  Google Scholar 

  29. Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227. doi:10.1111/j.1472-4669.2005.00052.x

    Article  Google Scholar 

  30. Miller DN et al (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65(11):4715–4724

    PubMed  CAS  Google Scholar 

  31. Moeseneder MM et al (1999) Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol 65(8):3518–3525

    PubMed  CAS  Google Scholar 

  32. More MI et al (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60(5):1572–1580

    PubMed  CAS  Google Scholar 

  33. Nakagawa S et al (2005) Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense. Int J Syst Evol Microbiol 55:2263–2268. doi:10.1099/ijs.0.63708-0

    Article  PubMed  CAS  Google Scholar 

  34. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740. doi:10.1126/science.276.5313.734

    Article  PubMed  CAS  Google Scholar 

  35. Pontes DS et al (2007) Molecular approaches: advantages and artifacts in assessing bacterial diversity. J Ind Microbiol Biotechnol 34:463–473. doi:10.1007/s10295-007-0219-3

    Article  PubMed  CAS  Google Scholar 

  36. Reysenbach AL, Ehringer M, Hershberger K (2000) Microbial diversity at 83 degrees C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4(1):61–67

    PubMed  CAS  Google Scholar 

  37. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a Laboratory manual. 2nd edn, Plainview, Cold Spring Harbor Laboratory Press, New York

  38. Schoenborn L et al (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 70(7):4363–4366. doi:10.1128/AEM.70.7.4363-4366.2004

    Article  PubMed  CAS  Google Scholar 

  39. Schoenfeld T, et al. (2008) Viral diversity and improved DNA polymerases, In: YNP RCN/TBI workshop, Mammoth Hot Springs, WY, USA

  40. Speksnijder AGCL et al (2001) Microvariation artifacts introduced by pcr and cloning of closely related 16S rRNA gene sequences. Appl Environ Microbiol 67(1):469–472. doi:10.1128/AEM.67.1.469-472.2001

    Article  PubMed  CAS  Google Scholar 

  41. Steffan RJ, Atlas RM (1998) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol 54(9):2185–2191

    Google Scholar 

  42. Stein JL et al (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol 178(3):591–599

    PubMed  CAS  Google Scholar 

  43. Takacs-Vesbach CD et al (2008) Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles. Environ Microbiol 10(7):1681–1689. doi:10.1111/j.1462-2920.2008.01584.x

    Article  PubMed  CAS  Google Scholar 

  44. von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213–229. doi:10.1111/j.1574-6976.1997.tb00351.x

    Article  Google Scholar 

  45. Yang ZH et al (2007) Comparison of methods for total community DNA extraction and purification from compost. Appl Microbiol Biotechnol 74:918–925. doi:10.1007/s00253-006-0704-z

    Article  PubMed  CAS  Google Scholar 

  46. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the comments and input by Robert Sinsabaugh and Diana Northup who kindly reviewed an earlier version of the manuscript. This work was supported by NSF Biodiversity Surveys and Inventories grant 02-06773 to CTV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina D. Takacs-Vesbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, K.R., Takacs-Vesbach, C.D. A comparison of methods for total community DNA preservation and extraction from various thermal environments. J Ind Microbiol Biotechnol 35, 1139–1147 (2008). https://doi.org/10.1007/s10295-008-0393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0393-y

Keywords

Navigation