Skip to main content
Log in

Assessment of methods to recover DNA from bacteria, fungi and archaea in complex environmental samples

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

DNA extraction from environmental samples is a critical step for metagenomic analysis to study microbial communities, including those considered uncultivable. Nevertheless, obtaining good quality DNA in sufficient quantities for downstream methodologies is not always possible, and it depends on the complexity and stability of each ecosystem, which could be more problematic for samples from tropical regions because those ecosystems are less stable and more complex. Three laboratory methods for the extraction of nucleic acids from samples representing unstable (decaying coffee pulp and mangrove sediments) and relatively stable (compost and soil) environments were tested. The results were compared with those obtained using two commercial DNA extraction kits. The quality of the extracted DNA was evaluated by PCR amplification to verify the recovery of bacterial, archaeal, and fungal genetic material. The laboratory method that gave the best results used a lysis procedure combining physical, chemical, and enzymatic steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alongi DM (1988) Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb Ecol 15(1):59–79. doi:10.1007/BF02012952

    Article  CAS  PubMed  Google Scholar 

  • Boon N, Marlé C, Top EM, Verstraete W (2000) Comparison of the spatial homogeneity of physico-chemical parameters and bacterial 16S rRNA genes in sediment samples from a dumping site for dredging sludge. Appl Microbiol Biot 53:742–747. doi:10.1007/s002530000325

    Article  CAS  Google Scholar 

  • Callaway RM, Mahall BE, Wicks C, Pankey J, Zabinski C (2003) Soil fungi and the effects of an invasive forb on grasses: neighbor identity matters. Ecology 84(1):129–135. doi:10.1890/0012-9658(2003)084[0129:SFATEO]2.0.CO;2

    Article  Google Scholar 

  • Castro V, Siu-Rodas Y, González-Huerta LV, Sokolov MY (2005) Contaminación por plaguicidas organoclorados en la Laguna Pampa El Cabildo, Chiapas, y su efecto tóxico en postlarvas de camarón blanco (Litopenaeus vannamei) (Decapoda:Penaeidae) de Chiapas, México. Rev Biol Trop 53(1):141–151. doi:10.15517/rbt.v53i1-2.14407

    Google Scholar 

  • Coolen M, Hopmans E, Rijpstra IC, Muyzer G, Schouten S, Volkman JK, Sinninghe-Damsté J (2004) Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org Geochem 35:1151–116. doi:10.1016/j.orggeochem.2004.06.009

    Article  CAS  Google Scholar 

  • Das M, Todd R, Leff L (2007) Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microb 73(3):756–767. doi:10.1128/AEM.01170-06

    Article  CAS  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89(12):5685–5689. doi:10.1073/pnas.89.12.5685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Esquivel P, Jiménez VM (2012) Functional properties of coffee and coffee by-products. Food Res Int 46(2):488–495. doi:10.1016/j.foodres.2011.05.028

    Article  CAS  Google Scholar 

  • Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: effects of substrate loading rates. Soil Biol Biochem 31:145–153. doi:10.1016/S0038-0717(98)00117-5

    Article  CAS  Google Scholar 

  • Griffiths BS, Kuan HL, Ritz K, Glover LA, McCaig AE, Fenwick C (2004) The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microb Ecol 47(1):104–113. doi:10.1007/s00248-002-2043-7

  • He Y, Zhao Y, Zhou G, Huang M (2009) Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from aged refuse for microbial community analysis. Word J Microb Biotechnol 25(11):2043–2051. doi:10.1007/s11274-009-0106-3

    Article  CAS  Google Scholar 

  • Hernández-Romero H, Tovilla-Hernández C, Malo E, Bello-Mendoza R (2004) Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Mar Pollut Bull 48:1130–1141. doi:10.1016/j.marpolbul.2004.01.003

    Article  PubMed  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington E (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63(8):3233–3241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang YX, Wu JG, Yu KQ, Ai CX, Zou F, Zhou HW (2011) Integrated lysis procedures reduces extraction biases of microbial DNA from mangrove sediments. J Biosci Bioeng 111(2):153–157. doi:10.1016/j.jbiosc.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73(6):2034–2042. doi:10.2307/1941453

    Article  Google Scholar 

  • May LA, Smiley B, Schmidt MG (2001) Comparative denaturing gradient gel electrophoresis of fungal communities associated with whole plant corn silage. Can J Microbiol 47(9):829–841. doi:10.1139/w01-086

    Article  CAS  PubMed  Google Scholar 

  • Moré MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60(5):1572–1580

    PubMed Central  PubMed  Google Scholar 

  • Nelson DM, Ohene-Adjei S, Hu FS, Cann IKO, Mackie RI (2007) Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. Microbial Ecol 54(2):252–263. doi:10.1007/s00248-006-9195-9

    Article  CAS  Google Scholar 

  • Nübel U, Engelen B, Felske A, Snaidr J, Weishuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178(19):5636–5643

    PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Vissers E, Bodelier P, Muyzer G, Laanbroek H (2009) A nested PCR approach for improved recovery of archaeal 16S rRNA gene fragments from freshwater samples. FEMS Microbiol Lett 298(2):193–198. doi:10.1111/j.1574-6968.2009.01718.x

    Article  CAS  PubMed  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. A guide to methods and applications. Academic Press, Inc., New York, pp 315–322

    Google Scholar 

  • Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213–229. doi:10.1111/j.1574-6976.1997.tb00351.x

    Article  Google Scholar 

  • Yang ZH, Xiao Y, Zeng GM, Xu ZY, Liu YS (2007) Comparison of methods for total community DNA extraction and purification from compost. Appl Microbiol Biot 74(4):918–925. doi:10.1007/s00253-006-0704-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Council of Science and Technology project CB-2008-01-101389. MYL-C thanks scholarship number 14877 from the National Council of Science and Technology. We thank Guillermo Vázquez-Martínez for technical assistance with PCR reactions. We thank Michael F. Dunn for reviewing the manuscript.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Guillén-Navarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillén-Navarro, K., Herrera-López, D., López-Chávez, M.Y. et al. Assessment of methods to recover DNA from bacteria, fungi and archaea in complex environmental samples. Folia Microbiol 60, 551–558 (2015). https://doi.org/10.1007/s12223-015-0403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0403-1

Keywords

Navigation