Skip to main content
Log in

Biosynthesis of sphinganine-analog mycotoxins

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Sphinganine-analog mycotoxins (SAMT) are polyketide-derived natural products produced by a number of plant pathogenic fungi and are among the most economically important mycotoxins. The toxins are structurally similar to sphinganine, a key intermediate in the biosynthesis of ceramides and sphingolipids, and competitive inhibitors for ceramide synthase. The inhibition of ceramide and sphingolipid biosynthesis is associated with several fatal diseases in domestic animals and esophageal cancer and neural tube defects in humans. SAMT contains a highly reduced, acyclic polyketide carbon backbone, which is assembled by a single module polyketide synthase. The biosynthesis of SAMT involves a unique polyketide chain-releasing mechanism, in which a pyridoxal 5′-phosphate-dependent enzyme catalyzes the termination, offloading and elongation of the polyketide chain. This leads to the introduction of a new carbon–carbon bond and an amino group to the polyketide chain. The mechanism is fundamentally different from the thioesterase/cyclase-catalyzed polyketide chain releasing found in bacterial and other fungal polyketide biosynthesis. Genetic data suggest that the ketosynthase domain of the polyketide synthase and the chain-releasing enzyme are important for controlling the final product structure. In addition, several post-polyketide modifications have to take place before SAMT become mature toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbas HK, Duke SO, Shier WT, Riley RT, Kraus GA (1996) The chemistry and biological activities of the natural products AAL-toxin and the fumonisins. Adv Exp Med Biol 391:293–308

    CAS  Google Scholar 

  2. Beck J, Ripka S, Siegner A, Schiltz E, Schweizer E (1990) The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem 192:487–498

    Article  CAS  Google Scholar 

  3. Bedford DJ, Schweizer E, Hopwood DA, Khosla C (1995) Expression of a functional fungal polyketide synthase in the bacterium Streptomyces coelicolor A3(2). J Bacteriol 177:4544–4548

    CAS  Google Scholar 

  4. Bingle LE, Simpson TJ, Lazarus CM (1999) Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet Biol 26:209–223

    Article  CAS  Google Scholar 

  5. Blackwell BA, Edwards OE, Fruchier A, ApSimon JW, Miller JD (1996) NMR structural studies of fumonisin B1 and related compounds from Fusarium moniliforme. Adv Exp Med Biol 392:75–91

    CAS  Google Scholar 

  6. Bojja RS, Cerny RL, Proctor RH, Du L (2004) Determining the biosynthetic sequence in the early steps of the fumonisin pathway by use of three gene-disruption mutants of Fusarium verticillioides. J Agric Food Chem 52:2855–2860

    Article  CAS  Google Scholar 

  7. Bottini AT, Bowen JR, Gilchrist DG (1981) Phytotoxins. II. A characterization of a phytotoxic fraction from Alternaria alternata f. sp. lycopersici. Tetrahedron Lett 22:2723–2726

    Article  CAS  Google Scholar 

  8. Bottini AT, Gilchrist DG (1981) Phytotoxins. I. A 1-aminodimethylheptadecapentol from Alternaria alternata f. sp. lycopersici. Tetrahedron Lett 22:2719–2722

    Article  CAS  Google Scholar 

  9. Brandwagt BF, Mesbah LA, Takken FL, Laurent PL, Kneppers TJ, Hille J, Nijkamp HJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci USA 97:4961–4966

    Article  CAS  Google Scholar 

  10. Branham BE, Plattner RD (1993) Alanine is a precursor in the biosynthesis of fumonisin B1 by Fusarium moniliforme. Mycopathologia 124:99–104

    Article  CAS  Google Scholar 

  11. Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ (1996) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci USA 93:1418–1422

    Article  CAS  Google Scholar 

  12. Bruner SD, Weber T, Kohli RM, Schwarzer D, Marahiel MA, Walsh CT, Stubbs MT (2002) Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure 10:301–310

    Article  CAS  Google Scholar 

  13. Butchko RA, Plattner RD, Proctor RH (2003) FUM9 is required for C-5 hydroxylation of fumonisins and complements the meitotically defined Fum3 locus in Gibberella moniliformis. Appl Environ Microbiol 69:6935–6937

    Article  CAS  Google Scholar 

  14. Butchko RA, Plattner RD, Proctor RH (2003) FUM13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis. J Agric Food Chem 51:3000–3006

    Article  CAS  Google Scholar 

  15. Butchko RA, Plattner RD, Proctor RH (2006) Deletion analysis of FUM genes involved in tricarballylic ester formation during fumonisin biosynthesis. J Agric Food Chem 54:9398–9404

    Article  CAS  Google Scholar 

  16. Caldas ED, Sadilkova K, Ward BL, Jones AD, Winter CK, Gilchrist DG (1998) Biosynthetic studies of fumonisin B1 and AAL toxins. J Agric Food Chem 46:4734–4743

    Article  CAS  Google Scholar 

  17. Cane DE, Walsh CT, Khosla C (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:63–68

    Article  CAS  Google Scholar 

  18. Cheng Q, Xiang L, Izumikawa M, Meluzzi D, Moore BS (2007) Enzymatic total synthesis of enterocin polyketides. Nat Chem Biol 3:557–558

    Article  CAS  Google Scholar 

  19. Cortes J, Haydock SF, Roberts GA, Bevitt DJ, Leadlay PF (1990) An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348:176–178

    Article  CAS  Google Scholar 

  20. Cox RJ (2007) Polyketides, proteins, genes in fungi programmed nano-machines begin to reveal their secrets. Org Biomol Chem 5:2010–2026

    Article  CAS  Google Scholar 

  21. Cox RJ, Glod F, Hurley D, Lazarus CM, Nicholson TP, Rudd BA, Simpson TJ, Wilkinson B, Zhang Y (2004) Rapid cloning and expression of a fungal polyketide synthase gene involved in squalestatin biosynthesis Chem Commun (Camb) 20:2260–2261

    Article  CAS  Google Scholar 

  22. Crawford JM, Dancy BC, Hill EA, Udwary DW, Townsend CA (2006) Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc Natl Acad Sci USA 103:16728–16733

    Article  CAS  Google Scholar 

  23. Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119(1-2):47–50 (Epub ahead of print, PMID: 17707105)

    Google Scholar 

  24. Dimroth P, Ringelmann E, Lynen F (1976) 6-Methylsalicylic acid synthetase from Penicillium patulum. Some catalytic properties of the enzyme and its relation to fatty acid synthetase. Eur J Biochem 68:591–596

    Article  CAS  Google Scholar 

  25. Ding Y, Bojja RS, Du L (2004) Fum3p, a 2-ketoglutarate-dependent dioxygenase required for C-5 hydroxylation of fumonisins in Fusarium verticillioides. Appl Environ Microbiol 70:1931–1934

    Article  CAS  Google Scholar 

  26. Donadio S, Katz L (1992) Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in Saccharopolyspora erythraea. Gene 111:51–60

    Article  CAS  Google Scholar 

  27. Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252:675–679

    Article  CAS  Google Scholar 

  28. Du L, Yu F, Zhu X, Zaleta-Rivera K, Bojja RS, Ding Y, Yi H, Wang Q (2007) Biochemical and molecular analysis of the biosynthesis of fumonisins. In: Baerson SR (ed) Polyketides: biosynthesis, biological activities and genetic engineering, American Chemical Society, Washington, DC, pp 81–96

    Google Scholar 

  29. Eley KL, Halo LM, Song Z, Powles H, Cox RJ, Bailey AM, Lazarus CM, Simpson TJ (2007) Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem 8:289–297

    Article  CAS  Google Scholar 

  30. Feng B, Wang X, Hauser M, Kaufmann S, Jentsch S, Haase G, Becker JM, Szaniszlo PJ (2001) Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. Infect Immun 69:1781–1794

    Article  CAS  Google Scholar 

  31. Ferreira GC, Vajapey U, Hafez O, Hunter GA, Barber MJ (1995) Aminolevulinate synthase: lysine 313 is not essential for binding the pyridoxal phosphate cofactor but is essential for catalysis. Protein Sci 4:1001–1006

    CAS  Google Scholar 

  32. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  CAS  Google Scholar 

  33. Fujii I, Mori Y, Watanabe A, Kubo Y, Tsuji G, Ebizuka Y (1999) Heterologous expression and product identification of Colletotrichum lagenarium polyketide synthase encoded by the PKS1 gene involved in melanin biosynthesis. Biosci Biotechnol Biochem 63:1445–1452

    Article  CAS  Google Scholar 

  34. Fujii I, Ono Y, Tada H, Gomi K, Ebizuka Y, Sankawa U (1996) Cloning of the polyketide synthase gene atX from Aspergillus terreus and its identification as the 6-methylsalicylic acid synthase gene by heterologous expression. Mol Gen Genet 253:1–10

    Article  CAS  Google Scholar 

  35. Fujii I, Watanabe A, Sankawa U, Ebizuka Y (2001) Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem Biol 8:189–197

    Article  CAS  Google Scholar 

  36. Gable K, Han G, Monaghan E, Bacikova D, Natarajan M, Williams R, Dunn TM (2002) Mutations in the yeast LCB1 and LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, dominantly inactivate serine palmitoyltransferase. J Biol Chem 277:10194–10200

    Article  CAS  Google Scholar 

  37. Gilchrist DG, Grogan RG (1976) Production and nature of a host-specific toxin from Alternaria alternata f. sp. lycopersici. Phytopathology 66:165–171

    Article  Google Scholar 

  38. Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632:16–30

    CAS  Google Scholar 

  39. Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    Article  CAS  Google Scholar 

  40. Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2498

    Article  CAS  Google Scholar 

  41. Kealey JT, Liu L, Santi DV, Betlach MC, Barr PJ (1998) Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci USA 95:505–509

    Article  CAS  Google Scholar 

  42. Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372

    Article  CAS  Google Scholar 

  43. Khosla C, Gokhale RS, Jacobsen JR, Cane DE (1999) Tolerance and specificity of polyketide synthases. Annu Rev Biochem 68:219–253

    Article  CAS  Google Scholar 

  44. Khosla C, Tang Y, Chen AY, Schnarr NA, Cane DE (2007) Structure and mechanism of the 6-deoxyerythronolide B synthase. Annu Rev Biochem 76:195–221

    Article  CAS  Google Scholar 

  45. Kittendorf JD, Sherman DH (2006) Developing tools for engineering hybrid polyketide synthetic pathways. Curr Opin Biotechnol 17:597–605

    Article  CAS  Google Scholar 

  46. Kongsaeree P, Prabpai S, Sriubolmas N, Vongvein C, Wiyakrutta S (2003) Antimalarial dihydroisocoumarins produced by Geotrichum sp., an endophytic fungus of Crassocephalum crepidioides. J Nat Prod 66:709–711

    Article  CAS  Google Scholar 

  47. Kono Y, Daly JM (1979) Characterization of the host-specific pathotoxin produced by Helminthosporium maydis race T affecting corn with Texas male sterile cytoplasm. Bioorg Chem 8:391–397

    Article  CAS  Google Scholar 

  48. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100:15670–15675

    Article  CAS  Google Scholar 

  49. Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT (1996) A new enzyme superfamily—the phosphopantetheinyl transferases. Chem Biol 3:923–936

    Article  CAS  Google Scholar 

  50. Marasas WF, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau-van Waes J, Missmer SA, Cabrera J, Torres O, Gelderblom WC, Allegood J, Martinez C, Maddox J, Miller JD, Starr L, Sullards MC, Roman AV, Voss KA, Wang E, Merrill AH Jr (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716

    CAS  Google Scholar 

  51. Menzella HG, Reeves CD (2007) Combinatorial biosynthesis for drug development. Curr Opin Microbiol 10:238–245

    Article  CAS  Google Scholar 

  52. Merrill AH Jr, van Echten G, Wang E, Sandhoff K (1993) Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J Biol Chem 268:27299–27306

    CAS  Google Scholar 

  53. Minto RE, Townsend CA (1997) Enzymology and molecular biology of aflatoxin biosynthesis. Chem Rev 97:2537–2556

    Article  CAS  Google Scholar 

  54. Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19:70–99

    Article  CAS  Google Scholar 

  55. Moriguchi T, Ebizuka Y, Fujii I (2006) Analysis of subunit interactions in the iterative type I polyketide synthase ATX from Aspergillus terreus. Chembiochem 7:1869–1874

    Article  CAS  Google Scholar 

  56. Nelson PE, Desjardins AE, Plattner RD (1993) Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Annu Rev Phytopathol 31:233–252

    Article  CAS  Google Scholar 

  57. Nesbitt BF, O’Kelly J, Sargeant K, Sheridan A (1962) Aspergillus flavus and turkey X disease. Toxic metabolites of Aspergillus flavus. Nature 195:1062–1063

    Article  CAS  Google Scholar 

  58. Nicholson TP, Rudd BA, Dawson M, Lazarus CM, Simpson TJ, Cox RJ (2001) Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol 8:157–178

    Article  CAS  Google Scholar 

  59. Plattner RD, Shackelford DD (1992) Biosynthesis of labeled fumonisins in liquid cultures of Fusarium moniliforme. Mycopathologia 117:17–22

    Article  CAS  Google Scholar 

  60. Price WD, Lovell RA, McChesney DG (1993) Naturally occurring toxins in feedstuffs: Center for Veterinary Medicine Perspective. J Anim Sci 71:2556–2562

    CAS  Google Scholar 

  61. Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249

    Article  CAS  Google Scholar 

  62. Proctor RH, Desjardins AE, Plattner RD, Hohn TM (1999) A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol 27:100–112

    Article  CAS  Google Scholar 

  63. Proctor RH, Plattner RD, Desjardins AE, Busman M, Butchko RA (2006) Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. J Agric Food Chem 54:2424–2430

    Article  CAS  Google Scholar 

  64. Richardson MT, Pohl NL, Kealey JT, Khosla C (1999) Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase. Metab Eng 1:180–187

    Article  CAS  Google Scholar 

  65. Riley RT, Wang E, Schroeder JJ, Smith ER, Plattner RD, Abbas H, Yoo HS, Merrill AH Jr (1996) Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Nat Toxins 4:3–15

    Article  CAS  Google Scholar 

  66. Seo JA, Proctor RH, Plattner RD (2001) Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 34:155–165

    Article  CAS  Google Scholar 

  67. Shen B (2000) Biosynthesis of aromatic polyketides. Top Curr Chem 209:1–51

    CAS  Google Scholar 

  68. Shiao MS, Don HS (1987) Biosynthesis of mevinolin, a hypocholesterolemic fungal metabolite, in Aspergillus terreus. Proc Natl Sci Counc Repub China B 11:223–231

    CAS  Google Scholar 

  69. Sims JW, Fillmore JP, Warner DD, Schmidt EW (2005) Equisetin biosynthesis in Fusarium heterosporum. Chem Commun (Camb) 2:186–188

    Article  CAS  Google Scholar 

  70. Song Z, Cox RJ, Lazarus CM, Simpson TT (2004) Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chembiochem 5:1196–1203

    Article  CAS  Google Scholar 

  71. Spencer JB, Jordan PM (1992) Investigation of the mechanism and steric course of the reaction catalyzed by 6-methylsalicylic acid synthase from Penicillium patulum using (R)-[1-13C;2-2H]- and (S)-[1-13C;2-2H]malonates. Biochem 31:9107–9116

    Article  CAS  Google Scholar 

  72. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  CAS  Google Scholar 

  73. Sweeney MJ, Dobson AD (1999) Molecular biology of mycotoxin biosynthesis. FEMS Microbiol Lett 175:149–163

    Article  CAS  Google Scholar 

  74. Tang Y, Kim CY, Mathews II, Cane DE, Khosla C (2006) The 2.7-Angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc Natl Acad Sci USA 103:11124–11129

    Article  CAS  Google Scholar 

  75. Tsai HF, Fujii I, Watanabe A, Wheeler MH, Chang YC, Yasuoka Y, Ebizuka Y, Kwon-Chung KJ (2001) Pentaketide melanin biosynthesis in Aspergillus fumigatus requires chain-length shortening of a heptaketide precursor. J Biol Chem 276:29292–29298

    Article  CAS  Google Scholar 

  76. Walsh CT, Gehring AM, Weinreb PH, Quadri LE, Flugel RS (1997) Post-translational modification of polyketide and nonribosomal peptide synthases. Curr Opin Chem Biol 1:309–315

    Article  CAS  Google Scholar 

  77. Wang Q, Wang J, Yu F, Zhu X, Zaleta-Rivera K, Du L (2006) Mycotoxin fumonisins: health impacts and biosynthetic mechanism. Prog Nat Sci 16:7–15

    Article  CAS  Google Scholar 

  78. Wang W, Jones C, Ciacci-Zanella J, Holt T, Gilchrist DG, Dickman MB (1996) Fumonisins and Alternaria alternata lycopersici toxins: sphinganine analog mycotoxins induce apoptosis in monkey kidney cells. Proc Natl Acad Sci USA 93:3461–3465

    Article  CAS  Google Scholar 

  79. Watanabe A, Ebizuka Y (2004) Unprecedented mechanism of chain length determination in fungal aromatic polyketide synthases. Chem Biol 11:1101–1106

    Article  CAS  Google Scholar 

  80. Watanabe A, Fujii I, Tsai H, Chang YC, Kwon-Chung KJ, Ebizuka Y (2000) Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. FEMS Microbiol Lett 192:39–44

    Article  CAS  Google Scholar 

  81. Webster SP, Alexeev D, Campopiano DJ, Watt RM, Alexeeva M, Sawyer L, Baxter RL (2000) Mechanism of 8-amino-7-oxononanoate synthase: spectroscopic, kinetic, and crystallographic studies. Biochem 39:516–528

    Article  CAS  Google Scholar 

  82. Winter CK, Gilchrist DG, Dickman MB, Jones C (1996) Chemistry and biological activity of AAL toxins. Adv Exp Med Biol 392:307–316

    CAS  Google Scholar 

  83. Wright JL, Vining LC, McInnes AG, Smith DG, Walter JA (1977) Use of 13C in biosynthetic studies. The labelling pattern in tenellin enriched from isotope-labelled acetate, methionine, and phenylalanine. Can J Biochem 55:678–685

    CAS  Google Scholar 

  84. Yang G, Rose MS, Turgeon BG, Yoder OC (1996) A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell 8:2139–2150

    Article  CAS  Google Scholar 

  85. Yi H, Bojja RS, Fu J, Du L (2005) Direct evidence for the function of FUM13 in 3-ketoreduction of mycotoxin fumonisins in Fusarium verticillioides. J Agric Food Chem 53:5456–5460

    Article  CAS  Google Scholar 

  86. Yu F, Zhu X, Du L (2005) Developing a genetic system for functional manipulations of FUM1, a polyketide synthase gene for the biosynthesis of fumonisins in Fusarium verticillioides. FEMS Microbiol Lett 248:257–264

    Article  CAS  Google Scholar 

  87. Zaleta-Rivera K, Xu C, Yu F, Butchko RA, Proctor RH, Hidalgo-Lara ME, Raza A, Dussault PH, Du L (2006) A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins. Biochem 45:2561–2569

    Article  CAS  Google Scholar 

  88. Zhu X, Yu F, Bojja RS, Zaleta-Rivera K, Du L (2006) Functional replacement of the ketosynthase domain of FUM1 for the biosynthesis of fumonisins, a group of fungal reduced polyketides. J Ind Microbiol Biotechnol 33:859–868

    Article  CAS  Google Scholar 

  89. Zhu X, Yu F, Li XC, Du L (2007) Production of dihydroisocoumarins in Fusarium verticillioides by swapping ketosynthase domain of the fungal iterative polyketide synthase Fum1p with that of lovastatin diketide synthase. J Am Chem Soc 129:36–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF (MCB-0614916) and NSF China (No. 30428023). The research was performed in facilities renovated with support from NIH (RR015468-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, L., Zhu, X., Gerber, R. et al. Biosynthesis of sphinganine-analog mycotoxins. J Ind Microbiol Biotechnol 35, 455–464 (2008). https://doi.org/10.1007/s10295-008-0316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0316-y

Keywords

Navigation