Skip to main content
Log in

Functional replacement of the ketosynthase domain of FUM1 for the biosynthesis of fumonisins, a group of fungal reduced polyketides

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The genetic manipulation of the biosynthesis of fungal reduced polyketides has been challenging due to the lack of knowledge on the biosynthetic mechanism, the difficulties in the detection of the acyclic, non-aromatic metabolites, and the complexity in genetically manipulating filamentous fungi. Fumonisins are a group of economically important mycotoxins that contaminate maize-based food and feed products worldwide. Fumonisins contain a linear dimethylated C18 chain that is synthesized by Fum1p, which is a single module polyketide synthase (PKS). Using a genetic system that allows the specific manipulation of PKS domains in filamentous fungus Fusarium verticillioides, we replaced the KS domain of fumonisin FUM1 with the KS domain of T-toxin PKS1 from Cochliobolus heterostrophus. Although PKS1 synthesizes different polyketides, the F. verticillioides strain carrying the chimeric PKS produced fumonisins. This represents the first successful domain swapping in PKSs for fungal reduced polyketides and suggests that KS domain alone may not be sufficient to control the product’s structure. To further test if the whole fumonisin PKS could be functionally replaced by a PKS that has a similar domain architecture, we replaced entire FUM1 with PKS1. This strain did not produce any fumonisin or new metabolites, suggesting that the intrinsic interactions between the intact PKS and downstream enzymes in the biosynthetic pathway may play a role in the control of fungal reduced polyketides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander NJ, Hohn TM, McCormick SP (1998) The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl Environ Microbiol 64:221–225

    CAS  Google Scholar 

  2. Aparicio JF, Molnar I, Schwecke T, Konig A, Haydock SF, Khaw LE, Staunton J, Leadlay PF (1996) Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. Gene 169:9–16

    Article  CAS  Google Scholar 

  3. Bedford DJ, Schweizer E, Hopwood DA, Khosla C (1995) Expression of a functional fungal polyketide synthase in the bacterium Streptomyces coelicolor A3(2). J Bacteriol 177:4544–4548

    CAS  Google Scholar 

  4. Blackwell BA, Edwards OE, Fruchier A, ApSimon JW, Miller JD (1996) NMR structural studies of fumonisin B1 and related compounds from Fusarium moniliforme. Adv Exp Med Biol 392:75–91

    CAS  Google Scholar 

  5. Bojja RS, Cerny RL, Proctor RH, Du L (2004) Determining the biosynthetic sequence in the early steps of the fumonisin pathway by use of three gene-disruption mutants of Fusarium verticillioides. J Agric Food Chem 52:2855–2860

    Article  CAS  Google Scholar 

  6. Branham BE, Plattner RD (1993) Alanine is a precursor in the biosynthesis of fumonisin B1 by Fusarium moniliforme. Mycopath 124:99–104

    Article  CAS  Google Scholar 

  7. Caldas ED, Sadilkova K, Ward BL, Jones AD, Winter CK, Gilchrist DG (1998) Biosynthetic studies of fumonisin B1 and AAL toxins. J Agric Food Chem 46:4734–4743

    Article  CAS  Google Scholar 

  8. Cox RJ, Glod F, Hurley D, Lazarus CM, Nicholson TP, Rudd BA, Simpson TJ, Wilkinson B, Zhang Y (2004) Rapid cloning and expression of a fungal polyketide synthase gene involved in squalestatin biosynthesis. Chem Commun (Camb):2260–2261

  9. Desjardins AE, Plattner RD, Proctor RH (1996) Genetic and biochemical aspects of fumonisin production. Adv Exp Med Biol 392:165–173

    CAS  Google Scholar 

  10. Ding Y, Bojja RS, Du L (2004) Fum3p, a 2-ketoglutarate-dependent dioxygenase required for C-5 hydroxylation of fumonisins in Fusarium verticillioides. Appl Environ Microbiol 70:1931–1934

    Article  CAS  Google Scholar 

  11. Fujii I, Watanabe A, Sankawa U, Ebizuka Y (2001) Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem Biol 8:189–197

    Article  CAS  Google Scholar 

  12. Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2498

    Article  CAS  Google Scholar 

  13. Kealey JT, Liu L, Santi DV, Betlach MC, Barr PJ (1998) Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci USA 95:505–509

    Article  CAS  Google Scholar 

  14. Keatinge-Clay AT, Maltby DA, Medzihradszky KF, Khosla C, Stroud RM (2004) An antibiotic factory caught in action. Nat Struct Mol Biol 11:888–893

    Article  CAS  Google Scholar 

  15. Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372

    Article  CAS  Google Scholar 

  16. Kono Y, Daly JM (1979) Characterization of the host-specific pathotoxin produced by Helminthosporium maydis race T affecting corn with Texas male sterile cytoplasm. Bioorg Chem 8:391–397

    Article  CAS  Google Scholar 

  17. Marasas WF, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau-van Waes J, Missmer SA, Cabrera J, Torres O, Gelderblom WC, Allegood J, Martinez C, Maddox J, Miller JD, Starr L, Sullards MC, Roman AV, Voss KA, Wang E, Merrill AH Jr (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716

    CAS  Google Scholar 

  18. Mayorga ME, Timberlake WE (1992) The developmentally regulated Aspergillus nidulans Wa gene encodes a polypeptide homologous to polyketide and fatty-acid synthases. Mol Gen Genet 235:205–212

    Article  CAS  Google Scholar 

  19. Plattner RD, Shackelford DD (1992) Biosynthesis of labeled fumonisins in liquid cultures of Fusarium moniliforme. Mycopath 117:17–22

    Article  CAS  Google Scholar 

  20. Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249

    Article  CAS  Google Scholar 

  21. Proctor RH, Desjardins AE, Plattner RD, Hohn TM (1999) A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol 27:100–112

    Article  CAS  Google Scholar 

  22. Richardson MT, Pohl NL, Kealey JT, Khosla C (1999) Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase. Metab Eng 1:180–187

    Article  CAS  Google Scholar 

  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  24. Seo JA, Proctor RH, Plattner RD (2001) Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 34:155–165

    Article  CAS  Google Scholar 

  25. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  CAS  Google Scholar 

  26. Takano Y, Kubo Y, Shimizu K, Mise K, Okuno T, Furusawa I (1995) Structural-analysis of Pks1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol Gen Genet 249:162–167

    Article  CAS  Google Scholar 

  27. Tang L, Yoon YJ, Choi CY, Hutchinson CR (1998) Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei. Gene 216:255–265

    Article  CAS  Google Scholar 

  28. Tang Y, Tsai SC, Khosla C (2003) Polyketide chain length control by chain length factor. J Am Chem Soc 125:12708–12709

    Article  CAS  Google Scholar 

  29. Wang Q, Wang J, Yu F, Zhu X, Zaleta-Rivera K, Du L (2006) Mycotoxin fumonisins: health impacts and biosynthetic mechanism. Prog Nat Sci 16:7–15

    Article  CAS  Google Scholar 

  30. Watanabe A, Ebizuka Y (2002) A novel hexaketide naphthalene synthesized by a chimeric polyketide synthase composed of fungal pentaketide and heptaketide synthases. Tetrahedron Lett 43:843–846

    Article  CAS  Google Scholar 

  31. Watanabe A, Ebizuka Y (2004) Unprecedented mechanism of chain length determination in fungal aromatic polyketide synthases. Chem Biol 11:1101–1106

    Article  CAS  Google Scholar 

  32. Yang G, Rose MS, Turgeon BG, Yoder OC (1996) A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell 8:2139–2150

    Article  CAS  Google Scholar 

  33. Yi H, Bojja RS, Fu J, Du L (2005) Direct evidence for the function of FUM13 in 3-ketoreduction of mycotoxin fumonisins in Fusarium verticillioides. J Agric Food Chem 53:5456–5460

    Article  CAS  Google Scholar 

  34. Yu F, Zhu X, Du L (2005) Developing a genetic system for functional manipulations of FUM1, a polyketide synthase gene for the biosynthesis of fumonisins in Fusarium verticillioides. FEMS Microbiol Lett 248:257–264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. R. H. Proctor and R. D. Plattner at USDA, Peoria, IL, for providing Cos6B and standard fumonisins, Drs. O. C. Yoder and B. G. Turgeon at Cornell University, Ithaca, NY, for pF5P1, and Dr. David G. Gilchrist at University of California, Davis, CA, USA, for F. verticillioides wild-type strain A0149. Drs. Ron Cerny and Kurt Wulser at Nebraska Center for Mass Spectrometry, University of Nebraska-Lincoln, provided technical assistance in LC-ESMS analyses. This work was supported in part by an Oversea Young Scholar Cooperation Research Fund from the National Natural Science Foundation of China (No. 30428023), a Nebraska Redox Biology Center Pilot grant, and a NSF EPSCOR II grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Yu, F., Bojja, R.S. et al. Functional replacement of the ketosynthase domain of FUM1 for the biosynthesis of fumonisins, a group of fungal reduced polyketides. J IND MICROBIOL BIOTECHNOL 33, 859–868 (2006). https://doi.org/10.1007/s10295-006-0137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0137-9

Keywords

Navigation