Skip to main content
Log in

Purification and biochemical characterization of a thermostable extracellular glucoamylase produced by the thermotolerant fungus Paecilomyces variotii

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 °C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 °C, with a t 50 of 45 min at 60 °C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl α-d-maltoside, methyl-α-d-glucopyranoside, pullulan, α- and β-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in α-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-α-d-glucan glucohydrolase).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. James JA, Lee BH (1997) Glucoamylases: microbial sources, industrial applications and molecular biology—a review. J Food Biochem 21:1–52

    Article  CAS  Google Scholar 

  2. Fierobe HP, Clarke AJ, Tull D, Svensson B (1998) Enzymatic properties of ceysteinsulfonic acid derivative of the catalytic base mutant Glu400→Cys of glucoamylase from Aspergillus awamori. Biochemistry 37:3753–3759

    Article  CAS  Google Scholar 

  3. Thorsen TS, Johnsen AH, Josefsen K, Jensen B (2006) Identification and characterization of glucoamylase from fungus Thermomyces lanuginosus. Biochim Biophys Acta 1764:671–676

    CAS  Google Scholar 

  4. Norouzian D, Akbarzadeh A, Scharer JM, Moo Young M (2006) Fungal glucoamylases. Biotechnol Adv 24:80–85

    Article  CAS  Google Scholar 

  5. Pandey A (1995) Glucoamylase research and overview. Starch 47(11):439–445

    Article  CAS  Google Scholar 

  6. Reilly PJ (1999) Protein engineering of glucoamylase to improve industrial properties: a review. Starch 51:269–274

    Article  CAS  Google Scholar 

  7. Rizzatti ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM (2001) Purification and properties of a thermostable extracellular β-d-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 26:156–160

    Article  CAS  Google Scholar 

  8. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–489

    Article  CAS  Google Scholar 

  9. Jones RL, Verner JE (1967) The bioassay of gibberelins. Plant 72:155–161

    Article  CAS  Google Scholar 

  10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:267–275

    Google Scholar 

  11. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  12. Hanes CS (1932) The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley. Biochem J 26:1406–1421

    CAS  Google Scholar 

  13. Tipton KF (1993) Principles of enzyme assay and kinetic studies. In: Eisenthal R, Danson MJ (eds) Enzyme assays: a practical approach. Oxford University Press, New York, pp 23–25

    Google Scholar 

  14. Davis BJ (1964) Disc electrophoresis. II. Methods and application to human serum proteins. Ann N Y Acad Sci 121:404–427

    Article  CAS  Google Scholar 

  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  16. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  17. Aquino ACMM, Jorge JA, Terenzi HF, Polizeli MLTM (2001) Thermostable glucose-tolerant glucoamylase produced by the thermophilic fungus Scytalidium thermophilum. Folia Microbiol 46(1):11–16

    CAS  Google Scholar 

  18. O’Farrel PZ, Goodman HM, O’Farrel PH (1977) High resolution two dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1142

    Article  Google Scholar 

  19. Fontana JD, Gebara M, Blumel M, Schneider H, Mackenzie CR, Johnson KG (1988) α-4-O-methyl-D-glucuronidase component of xylanolytic complexes. Methods Enzymol 160:560–571

    Article  CAS  Google Scholar 

  20. Vihinen M, Mäntsälä P (1989) Microbial amylolytic enzymes (Review). Crit Rev Biochem Mol Biol 24(4):329–419

    Article  CAS  Google Scholar 

  21. Pazur JH, Knull HR, Cepure A (1971) Glucoenzymes: structure and properties of the two forms of glucoamylase from Aspergillus niger. Carbohyd Res 20:83–96

    Article  CAS  Google Scholar 

  22. Yamasaki Y, Suzuki Y, Ozawa J (1977) Three forms of α-glucosidase and glucoamylase from Aspergillus awamori. Agric Biol Chem 41:2149–2161

    CAS  Google Scholar 

  23. Nguyen QD, Rezessy-Szabó JM, Claeyssens M, Stals I, Hoschke A (2002) Purification and characterisation of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme Microb Technol 31:345–352

    Article  CAS  Google Scholar 

  24. Cereia M, Terenzi HF, Jorge JA, Greene LJ, Rosa JC, Polizeli MLTM (2000) Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum. Biochemical and regulatory properties. J Basic Microbiol 40(2):83–92

    Article  CAS  Google Scholar 

  25. Silva WB, Peralta RM (1998) Purification and characterization of a thermostable glucoamylase from Aspergillus fumigatus. Can J Microbiol 44:493–497

    Article  Google Scholar 

  26. MacKenzie DA, Jeenes DJ, Xinghua G, Archer DB (2000) Molecular basis of glucoamylases overproduction by a mutagenised industrial strain of Aspergillus niger. Enz Microbial Technol 26:193–200

    Article  CAS  Google Scholar 

  27. Tosi LRO, Terenzi HF, Jorge JA (1993) Purification and characterization of an extracellular glucoamylase from the thermophilic fungus Humicola grisea var. thermoidea. Can J Microbiol 39:846–852

    Article  CAS  Google Scholar 

  28. Kanlayakrit W, Ishimatsu K, Nakao M, Hayashida S (1987) Characteristics of raw-starch-digesting glucoamylase from thermophilic Rhizomucor pusillus. J Ferment Technol 65:379–385

    Article  CAS  Google Scholar 

  29. Wilson JJ, Ingledew WM (1982) Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes. Appl Environ Microbiol 44(2):301–307

    CAS  Google Scholar 

  30. Fagerstrom R, Vanio A, Suorante K, Pakula T, Kalkkinen N, Torkkeli H (1990) Comparation of two glucoamylases from Hormoconis resinae. J Gen Microbiol 136:913–920

    CAS  Google Scholar 

  31. Bhumibhamon O (1983) Production of amyloglucosidase by submerged culture. Thai J Agric Sci 16:173

    CAS  Google Scholar 

  32. Tsekova K, Georgieva M, Ganchev I (1983) Enzyme preparation glucoamylase from culture liquid of strain Aspergillus niger B77. I. Isolation of crude enzyme preparation and study of some of its properties. Acta Microbiol Bulgaria 13:83

    CAS  Google Scholar 

  33. Stoffer B, Frandsen TP, Busk PK, Schneider P, Svendsen I, Svensson B (1993) Production, purification and characterization of the catalytic domain of glucoamylase from Aspergillus niger. Biochem J 292:197–202

    CAS  Google Scholar 

  34. Spinelli LBB, Polizeli MLTM, Terenzi HF, Jorge JA (1996) Biochemical characterization of glucoamylase from the hyperproducer exo-1 mutant strain of Neurospora crassa. FEMS Microbiol Lett 138:173–177

    Article  Google Scholar 

  35. Schulz GE, Schirmer RH (1979) Principles of protein structure, chap 3. Springer, Berlin

    Google Scholar 

  36. Sandrim VC, Rizzatti ACS, Terenzi HF, Jorge JA, Milagres AMF, Polizeli MLTM (2005) Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem 40:1823–1828

    Article  CAS  Google Scholar 

  37. Saha BC, Mitsue T, Ueda S (1979) Glucoamylase produced by submerged culture of Aspergillus oryzae. Starch/Särke 31:307–312

    Article  CAS  Google Scholar 

  38. Aleshin AE, Firsov LM, Honzatko RB (1994) Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. J Biol Chem 269(22):15631–15639

    CAS  Google Scholar 

  39. Nielsen BR, Lehmbeck J, Frandsen TP (2002) Cloning, heterologous expression, and enzymatic characterization of a thermostable glucoamylase from Talaromyces emersonii. Protein Expr Purif 26:1–8

    Article  CAS  Google Scholar 

  40. Coutinho PM, Reilly PJ (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins Struct Funct Gen 29:334–347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho de Desenvolvimento Científico e Tecnológico (CNPq). J.A.J., H.F.T. and M.L.T.M.P are Research Fellows of CNPq. M.M. was recipient of CAPES Fellowship and this work was part of a Master Dissertation submitted by M.M. to the Departamento de Biologia, FFCLRP, USP. We thank Ricardo Alarcon for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lourdes T. M. Polizeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelin, M., Ruller, R., Ward, R.J. et al. Purification and biochemical characterization of a thermostable extracellular glucoamylase produced by the thermotolerant fungus Paecilomyces variotii . J Ind Microbiol Biotechnol 35, 17–25 (2008). https://doi.org/10.1007/s10295-007-0261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0261-1

Keywords

Navigation