Skip to main content
Log in

Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The fermentative and respiratory metabolism of Pichia stipitis wild-type strain CBS 5774 and the derived auxotrophic transformation recipient PJH53 trp5-10 his3-1 were examined in differentially oxygenated glucose cultures in the hermetically sealed Sensomat system. There was a good agreement of the kinetics of gas metabolism, growth, ethanol formation and glucose utilisation, proving the suitability of the Sensomat system for rapid and inexpensive investigation of strains and mutants for their respiratory and fermentative metabolism. Our study revealed respiro-fermentative growth by the wild-type strain, although the cultures were not oxygen-limited. The induction of respiro-fermentative behaviour was obviously due to the decrease in oxygen tension but not falling below a threshold of oxygen tension. The responses differed depending on the velocity of the decrease in oxygen tension. At high oxygenation (slow decrease in oxygen tension), ethanol production was induced but glucose uptake was not influenced. At low oxygenation, glucose uptake and ethanol formation increased during the first hours of cultivation. The transformation recipient PJH53 most probably carries a mutation that influences the response to a slow decrease in oxygen tension, since almost no ethanol formation was found under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kington RE, Moore DD, Seidman JG, Smith JA, Struhl K (1991) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Chemie, Weinheim

    Google Scholar 

  • Bergter F (1983) Wachstum von Mikroorganismen. Experimente und Modelle. Chemie, Weinheim

    Google Scholar 

  • Bracken CP, Whitelaw ML, Peet DJ (2003) The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci 60:1376–1393

    Article  CAS  PubMed  Google Scholar 

  • Cho JY, Jeffries TW (1998) Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl Environ Microbiol 64:1350–1358

    Google Scholar 

  • Cho JY, Jeffries TW (1999) Transcriptional control of ADH genes in the xylose-fermenting yeast Pichia stipitis. Appl Environ Microbiol 65:2363–2368

    Google Scholar 

  • Dellweg H, Rizzi M, Methner H, Debus D (1984) Xylose fermentation by yeasts 3. Comparison of Pachysolen tannophilus and Pichia stipitis. Biotechnol Lett 6:395–400

    CAS  Google Scholar 

  • Dijken JP van, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224

    Article  Google Scholar 

  • Elsworth R, Williams V, Harris-Smith R (1957) The effect of oxygen supply on the rate of growth in Aerobacter cloacae. J Appl Chem 7:269–274

    CAS  Google Scholar 

  • Fiaux J, Cakar ZP, Sonderegger M, Wüthrich K, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180

    Article  CAS  PubMed  Google Scholar 

  • Fluthgraf S, Kirchhoff A, Debye J, Passoth V, Klinner U (2003) Non-conventional yeasts in genetics, biochemistry and biotechnology. Springer, Berlin Heidelberg New York, pp 229–223

    Google Scholar 

  • Gancedo C, Serrano R (1989) Energy-yielding metabolism. In: Rose AH, Harrison JS (eds) The yeasts, vol 3. Academic, London, pp 205–259

    Google Scholar 

  • Hagedorn J (1990) Isolierung und Charakterisierung von Mutanten im Xylosestoffwechsel und Entwicklung eines Transformationssystems für die Hefe Pichia stipitis. PhD thesis, University of Düsseldorf, Düsseldorf

  • Hensing MCM, Rouwenhorst RJ, Heijnen JJ, Dijken JP van, Pronk JT (1995) Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie van Leeuwenhoek 67:261–279

    CAS  PubMed  Google Scholar 

  • Jones EW, Fink GR (1982) Regulation of amino acid and nucleotide biosysnthesis in yeast. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 181–299

    Google Scholar 

  • Lighthelm ME, Prior BA, du Preez JC (1988) The oxygen requirements of yeasts for the fermentation of d-xylose and d-glucose to ethanol. Appl Microbiol Biotechnol 28:63–68

    Google Scholar 

  • Mergler M, Klinner U (2001) Cell density-correlated induction of pyruvate decarboxylase under aerobic conditions in the yeast Pichia stipitis. Acta Biol Hung 52:265–269

    Article  CAS  PubMed  Google Scholar 

  • Melake T, Passoth V, Klinner U (1996) Characterization of the genetic system of the xylose-fermenting yeast Pichia stipitis. Curr Microbiol 33:237–242

    Article  CAS  PubMed  Google Scholar 

  • Morosoli R, Zalce E, Durand S (1993) Secretion of a Cryptococcus albidus xylanase in Pichia stipitis resulting in a xylan fermenting transformant. Curr Genet 24:94–99

    CAS  PubMed  Google Scholar 

  • Passoth V, Hahn-Hägerdal B (2000) Production of a heterologous endo-1,4-beta-xylanase in the yeast Pichia stipitis with an O2-regulated promoter. Enzyme Microb Technol 26:781–784

    Article  CAS  PubMed  Google Scholar 

  • Passoth V, Zimmermann M, Klinner U (1996) Peculiarities of the regulation of fermentation and respiration in the Crabtree-negative, xylose-fermenting yeast Pichia stipitis. Appl Biochem Biotechnol 57/58:201–212

    Google Scholar 

  • Passoth V, Schäfer B, Liebel B, Weierstall T, Klinner U (1998) Molecular cloning of alcohol dehydrogenase genes of the yeast Pichia stipitis and identification of the fermentative ADH. Yeast 14:1311–1325

    Article  CAS  PubMed  Google Scholar 

  • Passoth V, Cohn M, Schäfer B, Hahn-Hägerdal B, Klinner U (2003) Analysis of the hypoxia-induced ADH2 promoter of the respiratory yeast Pichia stipitis reveals a new mechanism of hypoxia sensing of oxygen limitation in yeast. Yeast 20:39–51

    Article  CAS  PubMed  Google Scholar 

  • Petrik M, Käppeli O, Fiechter A (1983) An expanded concept for the glucose effect in the yeast Saccharomyces-uvarum— involvement of short-term and long-term regulation. J Gen Microbiol 129:43–49

    CAS  Google Scholar 

  • Piontek M, Hagedorn J, Hollenberg CP, Gellissen G, Strasser AWM (1998) Two novel gene expression systems based on the yeasts Schwanniomyces occidentalis and Pichia stipitis. Appl Microbiol Biotechnol 50:331–338

    Article  CAS  PubMed  Google Scholar 

  • du Preez JC (1994) Process parameters and environmental factors affecting d-xylose fermentation by yeasts. Enzyme Microb Technol 16:944–956

    Article  Google Scholar 

  • Pronk JT (2002) Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68:2095–2100

    Google Scholar 

  • Skoog K, Jeppsson H, Hahn-Hägerdal B (1992) The effect of oxygenation on glucose fermentation with Pichia stipitis. Appl Biochem Biotechnol 34/35:369–375

    Google Scholar 

  • Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta Bioenergetics 1411:217–230

    Article  CAS  Google Scholar 

  • Zitomer RS, Carrico P, Deckert J (1997) Regulation of hypoxic gene expression in yeast. Kidney Int 51:507–513

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft. We thank Ulrike Schmitt for linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Klinner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinner, U., Fluthgraf, S., Freese, S. et al. Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis. Appl Microbiol Biotechnol 67, 247–253 (2005). https://doi.org/10.1007/s00253-004-1746-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1746-8

Keywords

Navigation