Skip to main content
Log in

Purification and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

We report the purification and characterization of two thermophilic xylanases from the mesophilic bacteria Cellulomonas flavigena grown on sugarcane bagasse (SCB) as the only carbon source. Extracellular xylanase activity produced by C. flavigena was found both free in the culture supernatant and associated with residual SCB. To identify some of the molecules responsible for the xylanase activity in the substrate-bound fraction, residual SCB was treated with 3 M guanidine hydrochloride and then with 6 M urea. Further analysis of the eluted material led to the identification of two xylanases Xyl36 (36 kDa) and Xyl53 (53 kDa). The pI for Xyl36 was 5.0, while the pI for Xyl53 was 4.5. Xyl36 had a K m value of 1.95 mg/ml, while Xyl53 had a K m value of 0.78 mg/ml. In addition to SCB, Xyl36 and Xyl53 were also able to bind to insoluble oat spelt xylan and Avicel, as shown by substrate-binding assays. Xyl36 and Xyl53 showed optimal activity at pH 6.5, and at optimal temperature 65 and 55°C, respectively. Xyl36 and Xyl53 retained 24 and 35%, respectively, of their original activity after 8 h of incubation at their optimal temperature. As far as we know, this is the first study on the thermostability properties of purified xylanases from microorganisms belonging to the genus Cellulomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amaya-Delgado L, Vega-Estrada J, Flores-Cotera LB, Dendooven L, Hidalgo-Lara ME, Montes-Horcasitas MC (2006) Induction of xylanases by sugar cane bagasse at different cell densities of Cellulomonas flavigena. Appl Microbiol Biotechnol 70(4):477–481

    Article  CAS  Google Scholar 

  2. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  3. Béguin P, Einsen H (1978) Purification and partial characterization of three extracellular cellulases from Cellulomonas sp. Eur J Biochem 87:525–531

    Article  Google Scholar 

  4. Beily P (1993) Biochemical aspects of the production of microbial hemicellulose. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 29–51

    Google Scholar 

  5. Black GW, Hazlewood GP, Millward-Sadler SJ, Laurie JI, Gilbert HJ (1995) A modular xylanase containing a novel non-catalytic xylan-specific binding domain. Biochem J 307:191–195

    CAS  Google Scholar 

  6. Blanco A, Díaz P, Zueco J, Parascandola P, Pastor FIJ (1999) A multidomain xylanase from Bacillus sp with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiol 145:2163–2170

    Article  CAS  Google Scholar 

  7. Charnock SJ, Bolam DN, Turkenburg JP, Gilbert HJ, Ferreira LMA, Davies GJ, Fontes CMGA (2000) The X6 “thermostabilizing” domains of xylanase are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochem 39:5013–5021

    Article  CAS  Google Scholar 

  8. Clark JH, Davidson K, Gilbert HJ, Fontes CMGA, Hazlewood GP (1996) A modular xylanase from mesophilic Cellulomonas fimi contains the same cellulose-binding and thermostabilizing domains as xylanases from thermophilic bacteria. FEMS Microbiol Lett 139:27–35

    Article  Google Scholar 

  9. Dupont C, Roberge M, Shareck F, Morosoli R, Kluepfel D (1998) Substrate-binding domains of glycanases from Streptomyces lividans: characterization of a new family of xylan-binding domains. Biochem J 330:41–45

    CAS  Google Scholar 

  10. Fontes CMGA, Hazlewood GP, Morag E, Hall J, Hirst BH, Gilbert HJ (1995) Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. J Bacteriol 307:151–158

    CAS  Google Scholar 

  11. Gupta S, Gupta MN (1993) Mechanisms of irreversible thermonoinactivation and medium engineering. In: Gupta MN (ed) Thermostability of enzymes. Narosa Publishing House, New Dehli, pp 114–122

    Google Scholar 

  12. Jørgensen H, Eriksson T, Börjensen J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and one xylanase from Penicillum brasilianum IBT 20888. Enzyme Microb Technol 32:851–861

    Google Scholar 

  13. Kellet LE, Poole DM, Ferreira LMA, Durrant AJ, Hazlewood GP, Gilbert HJ (1990) Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulose contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem J 272:369–376

    Google Scholar 

  14. Khanna S, Gauri (1993) Regulation, purification and properties of xylanase from Cellulomonas fimi. Enzyme Microb Technol 15:990–995

  15. Kolenova K, Vršanska M, Biela P (2005) Purification and characterization of two minor endo-β-1,4-xylanases of Schizophyllum commune. Enzyme Microb Technol 36:903–910

    Article  CAS  Google Scholar 

  16. Kulkarni N, Shendye A, Rao M (2003) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  Google Scholar 

  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–686

    Article  CAS  Google Scholar 

  18. Lee SF, Forsberg CW, Rattray JB (1987) Purification and characterization of two endoxylanases from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 53:644–650

    CAS  Google Scholar 

  19. Levy I, Shoseyov O (2002) Cellulose-binding domains: biotechnological applications. Biotechol Adv 20:191–213

    Article  CAS  Google Scholar 

  20. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  22. Lymar ES, Li B, Renganathan V (1995) Purification and characterization of a cellulose-binding β-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 61:2976–2980

    CAS  Google Scholar 

  23. Martínez-Trujillo A, Pérez-Ávalos O, Ponce-Noyola T. (2003) Enzymatic properties of a purified xylanase from mutant PN-120 of Cellulomonas flavigena. Enzyme Microb Technol 32:401–406

    Article  CAS  Google Scholar 

  24. Milagres AMF, Lacis LS, Prade RA (1993) Characterization of xylanase production by a local isolate of Penicillum janthinellum. Enzyme Microb Technol 15:248–253

    Article  CAS  Google Scholar 

  25. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  26. Millward-Sadler SJ, Poole DM, Henrissat B, Hazlewood GP, Clarke JH, Gilbert HJ (1994) Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol Microbiol 11:375–382

    Article  CAS  Google Scholar 

  27. Montes HC, Ortega LJ, Magaña PI (1998) Xylanases from Cellulomonas flavigena: purification and characterization. Biotechnol Tech 12:663–666

    Article  Google Scholar 

  28. Nakamura S, Nakai R, Wakabayashi K, Ishiguro Y, Aono R, Horikoshi K (1994) Thermophilic alkaline xylanase from newly isolated alkalophilic and thermophilic Bacillus sp. strain TAR-1. Biosci Biotechnol Biochem 58:78–81

    Article  CAS  Google Scholar 

  29. Oku T, Roy C, Watson DC, Wakarchuk W, Campbell R, Yaguchi M, Jurasek L, Paice MG (1993) Amino acid sequence and thermostability of xylanase A from Schizophillum commune. FEBS 334:296–300

    Article  CAS  Google Scholar 

  30. Peréz AO, Ponce NT, Magaña PI, de la Torre MM (1996) Induction of xylanase and β-xylosidase in Cellulomonas flavigena growing on different carbon sources. Appl Microbiol Biotechnol 46:405–409

    Article  Google Scholar 

  31. Rapp P, Wagner F (1986) Production and properties of xylan-degrading enzymes from Cellulomonas uda. Appl Environ Microbiol 51:746–752

    CAS  Google Scholar 

  32. Rickard PAD, Laughlin TA (1980) Detection and assay of xylanolytic enzymes in a Cellulomona isolate. Biotechnol Lett 2:363–368

    Article  CAS  Google Scholar 

  33. Rodríguez H, Enríquez A, Volfova O (1985) The localization and activity of Cellulomonas xylanase on sugar cane bagasse pith. Can J Microbiol 31:754–756

    Article  Google Scholar 

  34. Sami AJ, Akhtar MW, Malik NN, Naz BA (1988) Production of free and substrate-bound cellulases of Cellulomonas flavigena. Enzyme Microb Technol 10:626–631

    Article  CAS  Google Scholar 

  35. Sandrim VC, Rizzatti ACS, Terenzi HF, Jorge JA, Milagres AMF, Polizeli MLTM (2005) Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem 40:1823–1828

    Article  CAS  Google Scholar 

  36. Schwarz WH, Bronnenmeier K, Grabnitz F, Staudenbauer WL (1987) Activity staining of cellulose in polyacrylamide gels containing mixed linkage glucans. Anal Biochem 164:72–77

    Article  CAS  Google Scholar 

  37. Shah AR, Madamwar D (2005) Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochem 40:1763–1771

    Article  CAS  Google Scholar 

  38. Tan LUL, Wong KKY, Yu EKC, Saddler JN (1985) Purification and characterization of two D-xylanases from Trichoderma harzianum. Enzyme Microb Technol 7:425–430

    Article  CAS  Google Scholar 

  39. Tan LUL, Yu EKC, Louis-Seize GW, Saddler JN (1987) Inexpensive, paid procedure for bulk purification of cellulase-free β-1,4-d-xylanase of high specific activity. Biotechnol Bioeng 30:96–100

    Article  CAS  Google Scholar 

  40. Tomme P, Warren RAJ, Miller RC Jr, Killburn DG, Gilkes NR (1995) Cellulose-binding domains: classification and properties. In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates. American Chemical Society, Washington, pp 142–163

    Google Scholar 

  41. Vega-Estrada J, Flores-Cotera LB, Santiago A, Magaña-Plaza I, Montes-Horcasitas C (2002) Draw-fill batch culture mode for production of xylanases by Cellulomonas flavigena on sugar cane bagasse. Appl Microbiol Biotechnol 58:435–438

    Article  CAS  Google Scholar 

  42. Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317

    CAS  Google Scholar 

  43. Yano KS, Poulos TL (2003) New understandings of thermostable, peizostable enzymes. Curr Opin Microbiol 14:360–365

    CAS  Google Scholar 

  44. Yasui T, Marui M, Kusakabe I, Nakanishi K (1988) Xylanases of Streptomyces. Methods Enzymol 160:648–654

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is dedicated, for the valuable teachings, to the memory of Dr. Ignacio Magaña-Plaza. We would like to thank Carmen Fontaine for the technical assistance. The research was funded by the Departamento de Biotecnología y Bioingeniería, CINVESTAV México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Hidalgo-Lara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiago-Hernández, A., Vega-Estrada, J., del Carmen Montes-Horcasitas, M. et al. Purification and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena . J Ind Microbiol Biotechnol 34, 331–338 (2007). https://doi.org/10.1007/s10295-006-0202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0202-4

Keywords

Navigation