Skip to main content

The Versatile Role of Plant Aquaglyceroporins in Metalloid Transport

  • Chapter
  • First Online:
Plant Metal and Metalloid Transporters

Abstract

Metalloids are elements with intermediate chemical properties between metals and nonmetals. The metalloids are biologically important elements, ranging from essential to extremely toxic elements with contrasting effects on organisms. Plants deal with a considerable imbalance of metalloids in the environment. Plants must acquire adequate amounts of essential metalloids for metabolism or contrarily exclude toxic metalloids to avoid cellular toxicity. The process of uptake and exclusion is guided by channel proteins, which transport metalloids across cellular membranes. Major intrinsic proteins (MIPs) are a family of selective channels that includes aquaporins (water channels) and aquaglyceroporins (glycerol and other solute channels). Aquaglyceroporin facilitates the transport of small solutes, including glycerol, small uncharged solutes, and gasses across biological membranes. Plant MIPs are grouped into five subfamilies based on sequence similarity and subcellular localization. Plant MIPs are mainly categorized into five subfamilies – plasma membrane intrinsic proteins (PIPs), nodulin-26-like intrinsic proteins (NIPs), tonoplast intrinsic proteins (TIPs), small basic intrinsic proteins (SIPs), and uncharacterized intrinsic proteins (XIPs). The uptake of environmental metalloids by aquaglyceroporins explains how beneficial elements such as silicon are taken up in plants. Conversely, toxic elements such as arsenic and antimony also enter the food chain via these channel proteins. The present review summarizes the role of various MIP homologs for transporting metalloids into and out of plant cells. This review discusses the detailed mechanism of MIPs for acquiring essential metalloids and their role in the influx and efflux in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal Z, Howton TC, Sun Y, Mukhtar MS (2016) The roles of aquaporins in plant stress responses. J Dev Biol 4(1):9

    Article  PubMed Central  Google Scholar 

  • Ampah-Korsah H, Anderberg HI, Engfors A, Kirscht A, Norden K, Kjellstrom S, Kjellbom P, Johanson U (2016) The aquaporin splice variant NbXIP1;1α is permeable to boric acid and is phosphorylated in the N-terminal domain. Front Plant Sci 7:862

    Article  PubMed  PubMed Central  Google Scholar 

  • An JC, Liu YZ, Yang CQ, Zhou GF, Wei QJ, Peng SA (2012) Isolation and expression analysis of CiNIP5, a citrus boron transport gene involved in tolerance to boron deficiency. Sci Hortic 142:149–154

    Article  CAS  Google Scholar 

  • Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R (2021) Metal and metalloid toxicity in plants: an overview on molecular aspects. Plants 10(4):1–28

    Article  Google Scholar 

  • Aquea F, Federici F, Moscoso C, Vega A, Jullian P, Haseloff JI, Arce-Johnson PA (2012) A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant Cell Environ 35(4):719–734

    Article  CAS  PubMed  Google Scholar 

  • Arnér ES (2010) Selenoproteins—what unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res 316(8):1296–1303

    Article  PubMed  Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant Microbe Interact 27(4):349–363

    Article  PubMed  Google Scholar 

  • Bienert MD, Bienert GP (2017) Plant aquaporins and metalloids. In: Plant aquaporins. Springer, Cham, pp 297–332

    Chapter  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6(1):1–5

    Article  Google Scholar 

  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66(2):306–317

    Article  CAS  PubMed  Google Scholar 

  • Bienert MD, Muries B, Crappe D, Chaumont F, Bienert GP (2019) Overexpression of X intrinsic protein 1;1 in Nicotiana tabacum and Arabidopsis reduces boron allocation to shoot sink tissues. Plant Direct 3(6):1–16

    Article  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielson JÅ, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8(1):1–5

    Article  Google Scholar 

  • Deng F, Yu M, Martinoia E, Song WY (2019) Ideal cereals with lower arsenic and cadmium by accurately enhancing vacuolar sequestration capacity. Front Genet 10(322):1–7

    Google Scholar 

  • Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83(4–5):303–315

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, Sonah H, Labbé C, Isenring P, Belzile FJ, Bélanger RR (2015) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83(3):489–500

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK, Sonah H, Bélanger RR (2016) Plant aquaporins: genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Front Plant Sci 7:1896

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh RK, Ma JF, Bélanger RR (2017a) Role of silicon in plants. Front Plant Sci 8(1858):5–7

    Google Scholar 

  • Deshmukh RK, Nguyen HT, Belanger RR (2017b) Aquaporins: dynamic role and regulation. Front Plant Sci 8:1420

    Article  PubMed  PubMed Central  Google Scholar 

  • Epstein E (2001) Silicon in plants: facts vs. concepts. In: Studies in plant science, vol 8. Elsevier, Amsterdam, pp 1–15

    Google Scholar 

  • Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteome 9(6):1063–1084

    Article  CAS  Google Scholar 

  • Fitzpatrick KL, Reid RJ (2009) The involvement of aquaglyceroporins in transport of boron in barley roots. Plant Cell Environ 32(10):1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Gattolin S, Sorieul M, Frigerio L (2011) Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. Mol Plant 4(1):180–189

    Article  CAS  PubMed  Google Scholar 

  • Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta Biomembr BBA Biomembr 1788(6):1213–1228

    Article  CAS  Google Scholar 

  • Gómez-Soto D, Galván S, Rosales E, Bienert P, Abreu I, Bonilla I, Bolaños L, Reguera M (2019) Insights into the role of phytohormones regulating pAtNIP5;1 activity and boron transport in Arabidopsis thaliana. Plant Sci 287:1–13

    Article  Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9(1):1–28

    Article  Google Scholar 

  • Hayes JE, Pallotta M, Baumann U, Berger B, Langridge P, Sutton T (2013) Germanium as a tool to dissect boron toxicity effects in barley and wheat. Funct Plant Biol 40(6):618–627

    Article  CAS  PubMed  Google Scholar 

  • He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H, Shi L, Zhu YG, Ma M (2016) An aquaporin PvTIP 4;1 from Pteris vittata may mediate arsenite uptake. New Phytol 209(2):746–761

    Article  CAS  PubMed  Google Scholar 

  • He M, Wang S, Zhang C, Liu L, Zhang J, Qiu S, Wang H, Yang G, Xue S, Shi L, Xu F (2021) Genetic variation of BnaA3. NIP5;1 expressing in the lateral root cap contributes to boron deficiency tolerance in Brassica napus. PLoS Genet 17(7):1–20

    Article  Google Scholar 

  • Hrmova M, Gilliham M, Tyerman SD (2020) Plant transporters involved in combating boron toxicity: beyond 3D structures. Biochem Soc Trans 48(4):1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua Y, Zhang D, Zhou T, He M, Ding G, Shi L, Xu F (2016) Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed. Plant Cell Environ 39(7):1601–1618

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582(11):1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Jauh GY, Fischer AM, Grimes HD, Ryan CA, Rogers JC (1998) δ-Tonoplast intrinsic protein defines unique plant vacuole functions. PNAS 95(22):12995–12999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauh GY, Phillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11(10):1867–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Z, Bienert MD, von Wirén N, Bienert GP (2021) Genome-wide association mapping identifies HvNIP2;2/HvLsi6 accounting for efficient boron transport in barley. Physiol Plant 171(4):809–822

    Article  CAS  PubMed  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126(4):1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya T, Fujiwara T (2009) Arabidopsis NIP1;1 transports antimonite and determines antimonite sensitivity. Plant Cell Physiol 50(11):1977–1981

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Mosa KA, Chhikara S, Musante C, White JC, Dhankher OP (2014) Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity. Planta 239(1):187–198

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Mosa KA, Meselhy AG, Dhankher OP (2018) Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. Indian J Plant Physiol 23(4):721–730

    Article  CAS  Google Scholar 

  • Kumawat S, Khatri P, Ahmed A, Vats S, Kumar V, Jaswal R, Wang Y, Xu P, Mandlik R, Shivaraj SM, Deokar A (2021) Understanding aquaporin transport system, silicon and other metalloids uptake and deposition in bottle gourd (Lagenaria siceraria). J Hazard Mater 409:124598

    Article  CAS  PubMed  Google Scholar 

  • Lee MS, Hwang S (2012) Cyc07 enhances arsenite tolerance by reducing As levels in Nicotiana tabacum and Arabidopsis thaliana. Plant Biotech Rep 6(4):391–405

    Article  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150(4):2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LH, Ludewig U, Gassert B, Frommer WB, von Wirén N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133(3):1220–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Yin L, Deng X, Wang S, Tanaka K, Zhang S (2014) Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot 65(17):4747–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie S, Brignolas F, Carpin S, Tournaire-Roux C, Maurel C, Fumanal B, Martin F, Sakr S, Label P, Julien JL, Gousset-Dupont A, Venisse JS (2012) Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot 63(5):2217–2230

    Article  CAS  PubMed  Google Scholar 

  • Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8(411):1–8

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65(19):3049–3057

    Article  CAS  PubMed  Google Scholar 

  • Macho-Rivero MA, Herrera-Rodríguez MB, Brejcha R, Schäffner AR, Tanaka N, Fujiwara T, González-Fontes A, Camacho-Cristóbal JJ (2018) Boron toxicity reduces water transport from root to shoot in Arabidopsis plants. Evidence for a reduced transpiration rate and expression of major PIP aquaporin genes. Plant Cell Physiol 59(4):841–849

    Article  CAS  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95(4):1321–1358

    Article  CAS  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62(12):4391–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Fujiwara T (2010) Boron transport in plants: coordinated regulation of transporters. Ann Bot 105(7):1103–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modareszadeh M, Bahmani R, Kim D, Hwang S (2021) Decreases in arsenic accumulation by the plasma membrane intrinsic protein PIP2;2 in Arabidopsis and yeast. Environ Pollut 275:1–10

    Article  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21(6):1265–1277

    Article  CAS  PubMed  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Musante C, White JC, Dhankher OP (2016) Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Sci Rep 6(1):1–4

    Article  Google Scholar 

  • Noronha H, Araújo D, Conde C, Martins AP, Soveral G, Chaumont F, Delrot S, Gerós H (2016) The grapevine uncharacterized intrinsic protein 1 (VvXIP1) is regulated by drought stress and transports glycerol, hydrogen peroxide, heavy metals but not water. PLoS One 11(8):1–18

    Article  Google Scholar 

  • Panda SK, Upadhyay RK, Nath S (2010) Arsenic stress in plants. J Agron Crop Sci 196(3):161–174

    Article  CAS  Google Scholar 

  • Pandey AK, Gautam A, Dubey RS (2019) Transport and detoxification of metalloids in plants in relation to plant-metalloid tolerance. Plant Gene 17:1–26

    Article  Google Scholar 

  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37(6):389–397

    Article  CAS  PubMed  Google Scholar 

  • Pang Y, Li J, Qi B, Tian M, Sun L, Wang X, Hao F (2017) Aquaporin AtTIP5;1 as an essential target of gibberellins promotes hypocotyl cell elongation in Arabidopsis thaliana under excess boron stress. Funct Plant Biol 45(3):305–314

    Article  Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 10(1):1–7

    Article  Google Scholar 

  • Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M (2021) Interactions of silicon with essential and beneficial elements in plants. Front Plant Sci 12:1–19

    Article  Google Scholar 

  • Pereira GL, Siqueira JA, Batista-Silva W, Cardoso FB, Nunes-Nesi A, Araújo WL (2021) Boron: more than an essential element for land plants? Front Plant Sci 11:1–10

    Article  CAS  Google Scholar 

  • Pommerrenig B, Diehn TA, Bienert GP (2015) Metalloido-porins: essentiality of nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci 238:212–227

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Bustamante A, Ros R, Serrano R, Mulet Salort JM (2018) BvCOLD1: a novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell Environ 41(12):2844–2857

    Article  CAS  PubMed  Google Scholar 

  • Quiroga G, Erice G, Aroca R, Ruiz-Lozano JM (2020) Elucidating the possible involvement of maize aquaporins in the plant boron transport and homeostasis mediated by Rhizophagus irregularis under drought stress conditions. Int J Mol Sci 21(5):1–21

    Article  Google Scholar 

  • Rios JJ, Martínez-Ballesta MC, Ruiz JM, Blasco B, Carvajal M (2017) Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Front Plant Sci 8:948

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera-Serrano EE, Rodriguez-Welsh MF, Hicks GR, Rojas-Pierce M (2012) A small molecule inhibitor partitions two distinct pathways for trafficking of tonoplast intrinsic proteins in Arabidopsis. PLoS One 7(9):1–11

    Article  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46(9):1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Kumar V, Dietz KJ (2021) Emerging trends in metalloid-dependent signaling in plants. Trends Plant Sci 26(5):452–471

    Article  CAS  PubMed  Google Scholar 

  • Shelden MC, Howitt SM, Kaiser BN, Tyerman SD (2009) Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol 36(12):1065–1078

    Article  CAS  Google Scholar 

  • Shivaraj SM, Deshmukh RK, Rai R, Bélanger R, Agrawal PK, Dash PK (2017) Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 7(1):1–7

    Article  Google Scholar 

  • Singh S, Kumar A, Panda D, Modi MK, Sen P (2020) Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam. Plant Gene 21:1–8

    Article  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86(3):373–389

    Article  CAS  PubMed  Google Scholar 

  • Soto G, Fox R, Ayub N, Alleva K, Guaimas F, Erijman EJ, Mazzella A, Amodeo G, Muschietti J (2010) TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J 64(6):1038–1047

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013) Quantitative real-time expression profiling of aquaporins-isoforms and growth response of Brassica juncea under arsenite stress. Mol Biol Rep 40(4):2879–2886

    Article  CAS  PubMed  Google Scholar 

  • Sudhakaran S, Thakral V, Padalkar G, Rajora N, Dhiman P, Raturi G, Sharma Y, Tripathi DK, Deshmukh R, Sharma TR, Sonah H (2021) Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. Physiol Plant 172(1):258–274

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Li L, Lou Y, Zhao H, Yang Y, Wang S, Gao Z (2017) The bamboo aquaporin gene PeTIP4;1–1 confers drought and salinity tolerance in transgenic Arabidopsis. Plant Cell Rep 36(4):597–609

    Article  CAS  PubMed  Google Scholar 

  • Takahashi E, Syo S, Miyake Y (1976) Effect of germanium on the growth of plants with special reference to the silicon nutrition. 1. Comparative studies on the silica nutrition in plants. J Sci Soil Manure 2:191–197

    Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, Von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18(6):1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatesh J, Yu JW, Park SW (2013) Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiol Biochem 73:392–404

    Article  CAS  PubMed  Google Scholar 

  • Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta (BBA) Biomembr 1758(8):1165–1175

    Article  CAS  Google Scholar 

  • WHO (2014) Codex Alimentarius Commission, 37th Session, Geneva, 14–18 July 2014. World Health Organization, Geneva

    Google Scholar 

  • Yan GC, Nikolic M, Ye MJ, Xiao ZX, Liang YC (2018) Silicon acquisition and accumulation in plant and its significance for agriculture. J Integr Agric 17(10):2138–2150

    Article  CAS  Google Scholar 

  • Yuan D, Li W, Hua Y, King GJ, Xu F, Shi L (2017) Genome-wide identification and characterization of the aquaporin gene family and transcriptional responses to boron deficiency in Brassica napus. Front Plant Sci 8:1–17

    Article  Google Scholar 

  • Zangi R, Filella M (2012) Transport routes of metalloids into and out of the cell: a review of the current knowledge. Chem Biol Interact 197(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yu F, Shi W, Li Y, Miao Y (2010) Physiological characteristics of selenite uptake by maize roots in response to different pH levels. J Plant Nutr Soil Sci 173(3):417–422

    Article  CAS  Google Scholar 

  • Zhang H, Feng X, Zhu J, Sapkota A, Meng B, Yao H, Qin H, Larssen T (2012) Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ Sci Technol 46(18):10040–10046

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153(4):1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YX, Xu XB, Hu YH, Han WH, Yin JL, Li HL, Gong HJ (2015) Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Rep 34(9):1629–1646

    Article  CAS  PubMed  Google Scholar 

  • Zulfiqar F, Akram NA, Ashraf M (2020) Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta 251(1):1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundan Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karle, S.B., Kumar, K., Dhankher, O.P. (2022). The Versatile Role of Plant Aquaglyceroporins in Metalloid Transport. In: Kumar, K., Srivastava, S. (eds) Plant Metal and Metalloid Transporters. Springer, Singapore. https://doi.org/10.1007/978-981-19-6103-8_7

Download citation

Publish with us

Policies and ethics