Skip to main content
Log in

Characterization of thermostable Xyn10A enzyme from mesophilic Clostridium acetobutylicum ATCC 824

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

A thermostable xylanase gene, xyn10A (CAP0053), was cloned from Clostridium acetobutylicum ATCC 824. The nucleotide sequence of the C. acetobutylicum xyn10A gene encoded a 318-amino-acid, single-domain, family 10 xylanase, Xyn10A, with a molecular mass of 34 kDa. Xyn10A exhibited extremely high (92%) amino acid sequence identity with Xyn10B (CAP0116) of this strain and had 42% and 32% identity with the catalytic domains of Rhodothermus marinus xylanase I and Thermoascus aurantiacus xylanase I, respectively. Xyn10A enzyme was purified from recombinant Escherichia coli and was highly active toward oat-spelt and Birchwood xylan and slightly active toward carboxymethyl cellulose, arabinogalactouronic acid, and various p-nitrophenyl monosaccharides. Xyn10A hydrolyzed xylan and xylooligosaccharides larger than xylobiose to produce xylose. This enzyme was optimally active at 60°C and had an optimum pH of 5.0. This is one of a number of related activities encoded on the large plasmid in this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ali BRS, Romaniec MM, Hazlewood GP, Freedman RB (1995) Characterization of the subunits in an apparently homogeneous subpopulation of Clostridium thermocellum cellulosomes. Enzyme Microb Technol 17:705–711

    Article  Google Scholar 

  2. Ali MK, Fukumura M, Sakano K, Karita S, Kimura T, Sakka K, Ohmiya K (1999) Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli. Biosci Biotechnol Biochem 63:1596–1604

    Google Scholar 

  3. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  Google Scholar 

  4. Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  CAS  PubMed  Google Scholar 

  5. Bradford MM (1997) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of dye binding. Anal Biochem 86:142–146

    Google Scholar 

  6. Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12

  7. Derewenda U, Swenson L, Green R, Wei Y, Morosoli R, Shareck F, Kluepfel D, Derewenda ZS (1994) Crystal structure at 2.6-Å resolution, of the Streptomyces lividans xylanase A, a member of the F family of β-1,4,-D-glycanases. J Biol Chem 269:20811–20814

    Google Scholar 

  8. Grohmann K, Wymann CE, Himmel ME (1992) Potential for fuels from biomass and waste. In: Rowell RM, Schults TP, Narayan R (eds) Emerging technologies for materials and chemicals from biomass. American Chemical Society, Washington, D.C., pp 354–392

    Google Scholar 

  9. Henrissat B, Bairoch A (1960) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    Google Scholar 

  10. Herbers K, Wilke I, Sonnewald U (1995) A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Bio/technology 13:63–66

    Article  Google Scholar 

  11. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    Google Scholar 

  12. Karlsson NE, Roxa EB, Holst O (1997) Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biochim Biophys Acta 1353:118–124

    PubMed  Google Scholar 

  13. Karlsson NE, Dahlberg L, Torto L, Gorton L, Holst O (1998) Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase Xyn1 from Rhodothermus marinus. J Biotechnol 60:23–35

    Article  Google Scholar 

  14. Katsube Y, Hata Y, Yamaguchi H (1990) Estimation of xylanase active site from crystalline structure. In: Ikehara M (ed) Protein engineering. Japan Scientific Societies, Tokyo, pp 91–96

    Google Scholar 

  15. Kellet LE, Pool DM, Ferreira LMA, Durrant AJ, Hazlewood GP, Gilbert HJ (1990) Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose binding domains and are encoded by adjacent genes. Biochem J 272:369–376

    Google Scholar 

  16. Kitamoto N, Yoshino S, Ito M, Kimura T, Ohmiya K, Tsukagoshi N (1998) Repression of the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae by introduction of multiple copies of the xynF1 promoter. Appl Microbiol Biotechnol 50:558–563

    Article  Google Scholar 

  17. Kosugi A, Murashima K, Doi RH (2002) Xylanase and acetyl esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulose for xylan degradation. Appl Environ Microbiol 68:6399–6402

    Article  CAS  PubMed  Google Scholar 

  18. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  CAS  PubMed  Google Scholar 

  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  20. Lee SF, Forsberg CW, Gibbins LN (1985) Xylanolytic activity of Clostridium acetobutylicum. Appl Environ Microbiol 50:1068–1076

    Google Scholar 

  21. Lee SF, Forsberg CW, Rattray M (1987) Purification and characterization of two endoxylanases from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 53:644–650

    Google Scholar 

  22. Lo Leggio L, Kalogiannis S, Bhat MK, Pickersgill RW (1999) High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta) alpha-barrel architecture. Proteins 36:295–306

    Article  Google Scholar 

  23. Lo Leggio L, Kalogiannis S, Eckert K, Teixeira SCM, Bhat MK, Andrei C, Pickersgill RW, Larsen S (2001) Substrate specificity and subunit mobility in T. aurantiacus Xylanase 10A. FEBS Lett 509:303–308

    Article  Google Scholar 

  24. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  25. Morris JG (1993) History and future potential of Clostridia in biotechnology. In: Woods DR (ed) The Clostridia and biotechnology. Butterworth–Heinemann, Stoneham, pp 227–246

    Google Scholar 

  26. Nolling JG, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    Article  CAS  PubMed  Google Scholar 

  27. Ohmiya K, Sakka K, Karita S, Kimura T (1997) Structure of cellulases and their applications. Biotechnol Genet Eng Rev 14:365–414

    Google Scholar 

  28. Paradis FW, Zhu H, Krell PJ, Phillips JP, Forsberg CW (1993) The XynC gene from Fibrobacter succinogenes S85 codes for a xylanase with two similar catalytic domains. J Bacteriol 175:7666–7672

    Google Scholar 

  29. Rogers P (1986) Genetics and biochemistry of Clostridium relevant to development of fermentation process. Adv Appl Microbiol 31:1–60

    Google Scholar 

  30. Shimada K, Karita S, Sakka K, Ohmiya K (1994) Cellulases, xylanases, and their genes from bacteria. In: Murooka Y, Imanaka T (eds) Recombinant microbes for industrial and agricultural applications. Dekker, New York, pp 395–429

    Google Scholar 

  31. Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39–67

    Google Scholar 

  32. Teather RM, Wood PJ (1982) Use of Congo red–polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  PubMed  Google Scholar 

  33. Tenkanen M, Siika-aho M, Hausalo T, Puls J, Viikari L (1996) Synergism of xylanolytic enzymes of Trichocoderma ressei in the degradation of acetyl-4-0-methylglucuronoxylan. In: Srebotnik E, Messner K (eds) Biotechnology in pulp and paper industry, recent advances in applied and fundamental research. WUV-Universitatsverlag, Vienna, pp 503–508

    Google Scholar 

  34. Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  Google Scholar 

  35. Tomme P, Warren AJ, Miller RC Jr, Kilburn DG, Gilkes NR (1995) Cellulose-binding domains—classification and properties. In: Sadder JM, Penner M (eds) The enzyme degradation of insoluble polysaccharides. American Chemical Society, Washington, D.C., pp 142–162

    Google Scholar 

  36. Viikari L, Ranua M, Kantellinen A, Sundquist J, Linko M (1986) Bleaching and enzymes. Proc Int Conf Biotechnol Pulp Pap Ind 3:67–69

    Google Scholar 

  37. Watson MEE (1984) Compilation of published signal sequences. Nucleic Acids Res 13:5145–5164

    Google Scholar 

  38. Wong KKY, Saddler JN (1992) Trichoderme xylanases: their properties and application. In: Visser J, Beldman G, Spmeren MAK, Voragen AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, pp 171–186

    Google Scholar 

  39. Wood WA, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    CAS  Google Scholar 

  40. Zhu H, Paradis FW, Krell PJ, Phillips JP, Forsberg CW (1994) Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85. J Bacteriol 176:3885–3894

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Kazuo Sakka, Mie University, Japan, for supplying pQE-30T. This research was supported by the United States Department of Agriculture, Grant 00-35500-926, and the Robert A. Welch Foundation, grants C-1268 and C-1372.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George N. Bennett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M.K., Rudolph, F.B. & Bennett, G.N. Characterization of thermostable Xyn10A enzyme from mesophilic Clostridium acetobutylicum ATCC 824. J IND MICROBIOL BIOTECHNOL 32, 12–18 (2005). https://doi.org/10.1007/s10295-004-0192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-004-0192-z

Keywords

Navigation