Skip to main content
Log in

Effects of Vitreoscilla hemoglobin on the 2,4-dinitrotoluene (2,4-DNT) dioxygenase activity of Burkholderia and on 2,4-DNT degradation in two-phase bioreactors

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Expression of vgb, encoding Vitreoscilla hemoglobin (VHb), in Burkholderia strain YV1 was previously shown to improve cell growth and enhance 2,4-dinitrotoluene (2,4-DNT) degradation compared with control strain DNT, especially under hypoxic conditions. In the work reported here, the ratio of 2,4-DNT degraded to oxygen uptake was approximately 5-fold larger for strain YV1 than for strain DNT. The addition of purified VHb to cytosolic fractions of strain DNT increased 2,4-DNT degradation 1.5-fold, compared with 1.1-fold for control bovine Hb, but increased the 2,4-DNT degradation 2.7-fold when added to partially purified 2,4-DNT dioxygenase, compared with 1.3-fold for bovine Hb. This suggests a direct transfer of oxygen from VHb to the oxygenase. In a bioreactor at high 2,4-DNT concentration (using 100 ml oleyl alcohol containing 2 g 2,4-DNT as the second phase) with 1.5 l culture, both strains could remove 0.8 g 2,4-DNT by 120 h; and, under the same conditions in a fed-batch reactor, the degradation increased to 1 g for strain YV1 but not for strain DNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a, b.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References:

  1. Aydin S, Webster DA, Stark BC (2000) Nitrite inhibition of Vitreoscilla hemoglobin (VHb) in recombinant E. coli: direct evidence that VHb enhances recombinant protein production. Biotechnol Prog 16:917–921

    Article  CAS  PubMed  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Buddenhagen RE, Webster DA, Stark BC (1996) Enhancement by bacterial hemoglobin of amylase production in recombinant E. coli occurs under conditions of low O2. Biotechnol Lett 18:695–700

    CAS  Google Scholar 

  4. Chung JW, Webster DA, Pagilla KR, Stark BC (2001) Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability. J Ind Microbiol Biotechnol 27:27–33

    Article  CAS  PubMed  Google Scholar 

  5. Collins LD, Daugulis AJ (1996) Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors. Biotechnol Bioeng 55:155–162

    Article  Google Scholar 

  6. Collins LD, Daugulis AJ (1999) Simultaneous biodegradation of benzene, toluene, and p-xylene in a two-phase partitioning bioreactor: concept demonstration and practical application. Biotechnol Prog 15:74–80

    Article  CAS  PubMed  Google Scholar 

  7. DeModena JA, Gutierrez S, Velasco J, Fernandez FJ, Fachini RA, Galazzo JL, Hughes DE, Martin JF (1993) The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Bio/Technology 11:926–929

    Google Scholar 

  8. Dikshit KL, Webster DA (1988) Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene 70:377–386

    CAS  PubMed  Google Scholar 

  9. Dikshit KL, Spaulding D, Braun A, Webster DA (1989) Oxygen inhibition of globin gene transcription and bacterial haemoglobin synthesis in Vitreoscilla. J Gen Microbiol 135:2601–2609

    CAS  PubMed  Google Scholar 

  10. Dikshit RP, Dikshit KL, Liu Y, Webster DA (1992) The bacterial hemoglobin from Vitreoscilla can support the aerobic growth of Escherichia coli lacking terminal oxidases. Arch Biochem Biophys 293:241–245

    CAS  PubMed  Google Scholar 

  11. Enayati N, Tari C, Parulekar SJ, Stark BC, Webster DA (1999) Production of α-amylase in fed-batch cultures of vgb + and vgb recombinant Escherichia coli: some observations. Biotechnol Prog 15:640–645

    Article  CAS  PubMed  Google Scholar 

  12. Fish PA, Webster DA, Stark BC (2000) Vitreoscilla hemoglobin enhances the first step in 2,4-dinitrotoluene degradation in vitro and at low aeration in vivo. J Mol Catal B Enzym 9:75–82

    Article  CAS  Google Scholar 

  13. Georgiou CD, Webster DA (1987) Identification of b, c, and d cytochromes in the membrane of Vitreoscilla. Arch Microbiol 148:328–333

    CAS  PubMed  Google Scholar 

  14. Haigler BE, Suen WC, Spain JC (1996) Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT. J Bacteriol 178:6019–6024

    CAS  PubMed  Google Scholar 

  15. Holmberg N, Lilius G, Bailey JE, Bülow L (1997) Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolic production. Nat Botechnol 15:244–247

    CAS  Google Scholar 

  16. Kallio PT, Bailey JE (1996) Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of alpha-amylase and neutral protease in Bacillus subtilis. Biotechnol Prog 12:31–39

    CAS  PubMed  Google Scholar 

  17. Kallio PT, Kim DJ, Tsai PS, Bailey JE (1994) Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur J Biochem 219:201–208

    CAS  PubMed  Google Scholar 

  18. Kallio PT, Tsai PS, Bailey JE (1996) Expression of Vitreoscilla hemoglobin is superior to horse heart myoglobin or yeast flavohemoglobin expression for enhancing Escherichia coli growth in a microaerobic bioreactor. Biotechnol Prog 6:751–757

    Article  Google Scholar 

  19. Keith LH, Telliard WA (1979) Priority pollutants. I. A perspective view. Environ Sci Technol 13:416–423

    Google Scholar 

  20. Khosla C, Bailey JE (1988a) Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331:633–635

    CAS  PubMed  Google Scholar 

  21. Khosla C, Bailey JE (1988b) The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequence, and genetic expression in Escherichia coli. Mol Gen Genet 214:158–161

    CAS  PubMed  Google Scholar 

  22. Khosravi M, Webster DA, Stark BC (1990) Presence of the bacterial hemoglobin gene improves α-amylase production of a recombinant Escherichia coli strain. Plasmid 24:190–194

    CAS  PubMed  Google Scholar 

  23. Kieboom J, Dennis JJ, Bont JAM de, Zylstra GJ (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91

    Article  CAS  PubMed  Google Scholar 

  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  25. Liu SC, Webster DA, Stark BC (1995) Cloning and expression of the Vitreoscilla hemoglobin gene in Pseudomonas: effects on cell growth. Appl Microbiol Biotechnol 44:419–424

    Article  CAS  Google Scholar 

  26. Liu SC, Webster DA, Wei ML, Stark BC (1996) Genetic engineering to contain the Vitreoscilla hemoglobin gene enhances degradation of benzoic acid by Xanthomonas maltophilia. Biotechnol Bioeng 49:101–105

    Article  CAS  Google Scholar 

  27. Magnolo SK, Leenutaphong DL, DeModena JA, Curtis JE, Bailey JE, Galazzo JL, Hughes DE (1991) Actinorhodin production by Streptomyces coelicolor and growth of Streptomyces lividans are improved by the expression of a bacterial hemoglobin. Bio/Technology 9:473–476

    Google Scholar 

  28. Morrissey JH (1981) Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310

    CAS  PubMed  Google Scholar 

  29. Nasr MA, Hwang KW, Akbas M, Webster DA, Stark BC (2000) Effects of culture conditions on enhancement of 2,4-dinitrotoluene degradation by Burkholderia engineered with the Vitreoscilla hemoglobin gene. Biotechnol Prog 17:359–361

    Article  Google Scholar 

  30. Park KW, Kim KJ, Howard AJ, Stark BC, Webster DA (2002) Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J Biol Chem 277:33334–33337

    Article  CAS  PubMed  Google Scholar 

  31. Patel SM, Stark BC, Hwang KW, Dikshit KL, Webster DA (2000) Cloning and Vitreoscilla hemoglobin gene in Burkholderia sp. strain DNT for enhancement of 2,4-dinitrotoluene degradation. Biotechnol Prog 16:26–30

    Article  CAS  PubMed  Google Scholar 

  32. Pendse GJ, Bailey JE (1994) Effects of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant Chinese hamster ovary cells. Biotechnol Bioeng 44:1367–1370

    CAS  Google Scholar 

  33. Pringsheim EG (1951) The Vitreoscillaceae: a family of colourless, gliding, filamentous organisms. J Gen Microbiol 5:124–149

    Google Scholar 

  34. Ramandeep, Hwang KW, Raje M, Kim KJ, Stark BC, Dikshit KL, Webster DA (2001) Vitreoscilla hemoglobin. Interacellullar localization and binding to membranes. J Biol Chem 27:24781–24789

    Article  Google Scholar 

  35. Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE (1991) Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol 57:3200–3205

    CAS  PubMed  Google Scholar 

  36. Suen WC, Spain JC (1993) Cloning and characterization of Pseudomonas sp. DNT genes for 2,4-dinitrotoluene degradation. J Bacteriol 175:1831–1837

    CAS  PubMed  Google Scholar 

  37. Suen WC, Haigler BE, Spain JC (1996) 2,4-dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. J Bacteriol 178:4926–4934

    CAS  PubMed  Google Scholar 

  38. Switzer RL, Garrity LF (1999) Experimental biochemistry. Julet, New York

  39. Tari C, Parulekar SJ, Stark BC, Webster DA (1998) Synthesis and excretion of α-amylase in vgb + and vgb recombinant Escherichia coli: a comparative study. Biotechnol Bioeng 59:673–678

    CAS  PubMed  Google Scholar 

  40. Tarricone C, Galizzi A, Coda A, Ascenzi P, Bolognesi M (1997) Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure 5:497–507

    CAS  PubMed  Google Scholar 

  41. Wakabayashi S, Matsubara H, Webster DA (1986) Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322:481–483

    CAS  PubMed  Google Scholar 

  42. Webster DA (1987) Structure and function of bacterial hemoglobin and related proteins. In: Eichhorn GC, Marzilli LG (eds) Advances in inorganic biochemistry. Elsevier, New York, pp 245–265

  43. Wei ML, Webster DA, Stark BC (1998) Genetic engineering of Serratia marcescens with bacterial hemoglobin gene: effects on growth, oxygen utilization, and cell size. Biotechnol Bioeng 57:477–483

    Article  CAS  PubMed  Google Scholar 

  44. Wei ML, Webster DA, Stark BC (1998) Metabolic engineering of Serratia marcescens with the bacterial hemoglobin gene: alterations in fermentation pathways. Biotechnol Bioeng 59:640–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant number MCB-9910356 from the National Science Foundation and grant number F49620-95-1-0325 from the Air Force Office of Scientific Research. Purified VHb was a gift from Dr. K.W. Hwang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale A. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, JM., Stark, B.C. & Webster, D.A. Effects of Vitreoscilla hemoglobin on the 2,4-dinitrotoluene (2,4-DNT) dioxygenase activity of Burkholderia and on 2,4-DNT degradation in two-phase bioreactors. J IND MICROBIOL BIOTECHNOL 30, 362–368 (2003). https://doi.org/10.1007/s10295-003-0054-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-003-0054-0

Keywords

Navigation