Skip to main content
Log in

Position-domain integrity risk-based ambiguity validation for the integer bootstrap estimator

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Integrity monitoring for ambiguity resolution is of significance for utilizing the high-precision carrier phase differential positioning for safety–critical navigational applications. The integer bootstrap estimator can provide an analytical probability density function, which enables the precise evaluation of the integrity risk for ambiguity validation. In order to monitor the effect of unknown ambiguity bias on the integer bootstrap estimator, the position-domain integrity risk of the integer bootstrapped baseline is evaluated under the complete failure modes by using the worst-case protection principle. Furthermore, a partial ambiguity resolution method is developed in order to satisfy the predefined integrity risk requirement. Static and kinematic experiments are carried out to test the proposed method by comparing with the traditional ratio test method and the protection level-based method. The static experimental result has shown that the proposed method can achieve a significant global availability improvement by 51% at most. The kinematic result reveals that the proposed method obtains the best balance between the positioning accuracy and the continuity performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blanch J, Walter T, Enge P (2010) RAIM with optimal integrity and continuity allocations under multiple failures. IEEE T Aerosp Electron Syst 46(3):1235–1247

    Article  Google Scholar 

  • De Jonge P, Tiberius C (1996) The LAMBDA method for integer ambiguity estimation: implementation aspects. No. 12 of LGR-Series. Delft Geodetic Computing Centre, Delft

    Book  Google Scholar 

  • Farrell JA, Givargis TD, Barth MJ (2000) Real-time differential carrier phase GPS-aided INS. IEEE Trans Control Syst Technol 8(4):709–721

    Article  Google Scholar 

  • Feng S, Ochieng W, Moore T, Hill C, Hide C (2009) Carrier-phase based integrity monitoring for high accuracy positioning. GPS Solut 13(1):13–22

    Article  Google Scholar 

  • ICAO Annex 10, Aeronautical Telecommunications, Volume 1 (Radio Navigation Aids), Amendment 84, published 20 July 2009, effective 19 November 2009. GNSS standards and recommended practices (SARPs) are contained in Section 3.7 and subsections, Appendix B, and Attachment D

  • Khanafesh S, Pervan B (2010) New approach for calculating position domain integrity risk for cycle resolution in carrier phase navigation systems. IEEE Trans Aerosp Electron Syst 46(1):296–307

    Article  Google Scholar 

  • Khanafseh S, Pervan B (2011) Detection and mitigation of reference receiver faults in differential carrier phase navigation systems. IEEE Trans Aerosp Electron Syst 47(4):2391–2404

    Article  Google Scholar 

  • Langel S, Khanafesh S, Pervan B (2016) Bounding the integer bootstrapped GNSS baseline’s tail probability in the presence of stochastic uncertainty. J Geod 90(11):1293–1305

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, New York

    Google Scholar 

  • Li L, Quddus M, Ison S, Zhao L (2012) Multiple reference consistency check for LAAS: a novel position domain approach. GPS Solut 16(2):209–220

    Article  Google Scholar 

  • Li L, Quddus M, Zhao L (2013) High accuracy tightly-coupled integrity monitoring algorithm for map-matching. Transp Res C Emerg 36C:13–26

    Article  Google Scholar 

  • Li B, Shen Y, Feng Y, Gao W, Yang L (2014) GNSS ambiguity resolution with controllable failure rate for long baseline network RTK. J Geod 88(2):99–112

    Article  Google Scholar 

  • Li L, Li Z, Yuan H, Wang L, Hou Y (2016) Integrity monitoring-based ratio test for GNSS integer ambiguity validation. GPS Solut 20(3):573–585

    Article  Google Scholar 

  • Li L, Jia C, Zhao L, Yang F, Li Z (2017a) Integrity monitoring-based ambiguity validation for triple-carrier ambiguity resolution. GPS Solut 21(2):797–810

    Article  Google Scholar 

  • Li L, Wang H, Jia C, Zhao L, Zhao Y (2017b) Integrity and continuity allocation for the RAIM with multiple constellations. GPS Solut 21(4):1503–1513

    Article  Google Scholar 

  • Ochieng W, Sauer K, Walsh D, Brodin G, Griffin S, Denny M (2003) GPS integrity and potential impact on aviation safety. J Navig 56(1):51–65

    Article  Google Scholar 

  • Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82(8):473–492

    Article  Google Scholar 

  • Oehler V, Luongo F, Trautenberg HL, Boyero J-P, Krueger J, Rang T (2005) The Galileo integrity concept and performance. In: Proceedings of ION GNSS 2005, Institute of Navigation, Fort Worth, pp 604–615

  • Parkins A (2011) Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm. GPS Solut 15(4):391–402

    Article  Google Scholar 

  • Parkinson B, Spilker J, Axelrad P, Enge P (1996) Global positioning system: theory and applications, vol II. American Institute of Aeronautics and Astronautics Inc, Washington

    Book  Google Scholar 

  • Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612

    Article  Google Scholar 

  • Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73(11):587–593

    Article  Google Scholar 

  • Teunissen PJG (2001) The probability distribution of the ambiguity bootstrapped GNSS baseline. J Geod 75(5–6):267–275

    Article  Google Scholar 

  • Teunissen PJG (2004) Penalized GNSS ambiguity resolution. J Geod 78(4):235–244

    Article  Google Scholar 

  • Teunissen PJG, Verhagen S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Surv Rev 41(312):138–151

    Article  Google Scholar 

  • Wang L, Verhagen S (2014) A new ambiguity acceptance test threshold determination method with controllable failure rate. J Geod 89(4):361–375

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Gang Liu from Naval Aeronautical and Astronautical University (China) for providing the kinematic GNSS data. This research was jointly funded by National Natural Science Foundation of China (Nos. 61773132, 61633008, 61374007, 61304235), the Fundamental Research Funds for Central Universities (No. HEUCFP201768), and the Post-Doctoral Scientific Research Foundation, Heilongjiang Province (No. LBH-Q15033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Jia.

Appendix: bounding the ambiguity bias

Appendix: bounding the ambiguity bias

Since P(H1) + P(H0) = 1, thus,

$$P\left( {H_{1,i} } \right) = \prod\limits_{j = 1}^{n} {\left[ {\varPhi \left( {\frac{{1 - 2{\mathbf{l}}_{j}^{T} \Delta {\mathbf{z}}_{i} }}{{2\sigma_{\left. j \right|I} }}} \right) + \varPhi \left( {\frac{{1 + 2{\mathbf{l}}_{j}^{T} \Delta {\mathbf{z}}_{i} }}{{2\sigma_{\left. j \right|I} }}} \right) - 1} \right]} = 1 - P\left( {H_{0} } \right)$$
(11)

Let us define Δb i,j  = \({\mathbf{l}}_{j}^{T} \Delta {\mathbf{z}}_{i}\) to be the bias under the ith ambiguity resolution failure mode. Because any single failure rate of ambiguity resolution in (11) should be no less than 1 − P(H0),

$$\varPhi \left( {\frac{{1 - 2\Delta b_{j,i} }}{{2\sigma_{\left. j \right|I} }}} \right) + \varPhi \left( {\frac{{1 + 2\Delta b_{j,i} }}{{2\sigma_{\left. j \right|I} }}} \right) - 1 \ge 1 - P\left( {H_{0} } \right){\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} j \in \left[ {1,n} \right]$$
(12)

Because the left-hand terms in (12) are monotonous with Δbj,i, the threshold value Δb th can be obtained iteratively by applying the Newton–Raphson method to (12), which yields,

$$\Delta b_{j,i} = \sum\limits_{k = 1}^{n} {{\mathbf{l}}_{j,k}^{T} \Delta {\mathbf{z}}_{i,k} } \in \left[ { - \Delta b_{th} ,\Delta b_{th} } \right]$$
(13)

According to the Cauchy–Schwartz inequality, the bias Δbj,i in (13) should satisfy

$$n{\mathbf{l}}_{j,\hbox{min} } \Delta {\mathbf{z}}_{\hbox{min} } \le \sum\limits_{k = 1}^{n} {{\mathbf{l}}_{j,k}^{T} \Delta {\mathbf{z}}_{i,k} } \le n{\mathbf{l}}_{j,\hbox{max} } \Delta {\mathbf{z}}_{\hbox{max} }$$
(14)

where lj,min and lj,max are the minimum and the maximum element of L j , Δzmin and Δzmax are the lower and upper bounds for ith failure mode, respectively. According to (14), in order to maintain the satisfaction of (13), the bias value should satisfy

$$- \text{abs} \left[ {\frac{{\Delta b_{th} }}{{nl_{j,\hbox{min} } }}} \right] \le \Delta {\mathbf{z}}_{i} \le \left[ {\frac{{\Delta b_{th} }}{{nl_{j,\hbox{max} } }}} \right]$$
(15)

in which abs[•] indicates the rounding operation and the absolute value sequentially. From (15), the lower and upper bounds of ambiguity bias as well as the searching space of ambiguity bias can be determined. It is noted that the searching space of ambiguity bias can be reduced when the success rate is higher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Shi, H., Jia, C. et al. Position-domain integrity risk-based ambiguity validation for the integer bootstrap estimator. GPS Solut 22, 39 (2018). https://doi.org/10.1007/s10291-018-0703-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-018-0703-4

Keywords

Navigation