Advertisement

GPS Solutions

, 22:39 | Cite as

Position-domain integrity risk-based ambiguity validation for the integer bootstrap estimator

  • Liang Li
  • Haodong Shi
  • Chun Jia
  • Jianhua Cheng
  • Hui Li
  • Lin Zhao
Original Article
  • 281 Downloads

Abstract

Integrity monitoring for ambiguity resolution is of significance for utilizing the high-precision carrier phase differential positioning for safety–critical navigational applications. The integer bootstrap estimator can provide an analytical probability density function, which enables the precise evaluation of the integrity risk for ambiguity validation. In order to monitor the effect of unknown ambiguity bias on the integer bootstrap estimator, the position-domain integrity risk of the integer bootstrapped baseline is evaluated under the complete failure modes by using the worst-case protection principle. Furthermore, a partial ambiguity resolution method is developed in order to satisfy the predefined integrity risk requirement. Static and kinematic experiments are carried out to test the proposed method by comparing with the traditional ratio test method and the protection level-based method. The static experimental result has shown that the proposed method can achieve a significant global availability improvement by 51% at most. The kinematic result reveals that the proposed method obtains the best balance between the positioning accuracy and the continuity performance.

Keywords

Integrity monitoring Bootstrapping Integrity risk Partial ambiguity resolution 

Notes

Acknowledgements

The authors thank Dr. Gang Liu from Naval Aeronautical and Astronautical University (China) for providing the kinematic GNSS data. This research was jointly funded by National Natural Science Foundation of China (Nos. 61773132, 61633008, 61374007, 61304235), the Fundamental Research Funds for Central Universities (No. HEUCFP201768), and the Post-Doctoral Scientific Research Foundation, Heilongjiang Province (No. LBH-Q15033).

References

  1. Blanch J, Walter T, Enge P (2010) RAIM with optimal integrity and continuity allocations under multiple failures. IEEE T Aerosp Electron Syst 46(3):1235–1247CrossRefGoogle Scholar
  2. De Jonge P, Tiberius C (1996) The LAMBDA method for integer ambiguity estimation: implementation aspects. No. 12 of LGR-Series. Delft Geodetic Computing Centre, DelftCrossRefGoogle Scholar
  3. Farrell JA, Givargis TD, Barth MJ (2000) Real-time differential carrier phase GPS-aided INS. IEEE Trans Control Syst Technol 8(4):709–721CrossRefGoogle Scholar
  4. Feng S, Ochieng W, Moore T, Hill C, Hide C (2009) Carrier-phase based integrity monitoring for high accuracy positioning. GPS Solut 13(1):13–22CrossRefGoogle Scholar
  5. ICAO Annex 10, Aeronautical Telecommunications, Volume 1 (Radio Navigation Aids), Amendment 84, published 20 July 2009, effective 19 November 2009. GNSS standards and recommended practices (SARPs) are contained in Section 3.7 and subsections, Appendix B, and Attachment DGoogle Scholar
  6. Khanafesh S, Pervan B (2010) New approach for calculating position domain integrity risk for cycle resolution in carrier phase navigation systems. IEEE Trans Aerosp Electron Syst 46(1):296–307CrossRefGoogle Scholar
  7. Khanafseh S, Pervan B (2011) Detection and mitigation of reference receiver faults in differential carrier phase navigation systems. IEEE Trans Aerosp Electron Syst 47(4):2391–2404CrossRefGoogle Scholar
  8. Langel S, Khanafesh S, Pervan B (2016) Bounding the integer bootstrapped GNSS baseline’s tail probability in the presence of stochastic uncertainty. J Geod 90(11):1293–1305CrossRefGoogle Scholar
  9. Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, New YorkGoogle Scholar
  10. Li L, Quddus M, Ison S, Zhao L (2012) Multiple reference consistency check for LAAS: a novel position domain approach. GPS Solut 16(2):209–220CrossRefGoogle Scholar
  11. Li L, Quddus M, Zhao L (2013) High accuracy tightly-coupled integrity monitoring algorithm for map-matching. Transp Res C Emerg 36C:13–26CrossRefGoogle Scholar
  12. Li B, Shen Y, Feng Y, Gao W, Yang L (2014) GNSS ambiguity resolution with controllable failure rate for long baseline network RTK. J Geod 88(2):99–112CrossRefGoogle Scholar
  13. Li L, Li Z, Yuan H, Wang L, Hou Y (2016) Integrity monitoring-based ratio test for GNSS integer ambiguity validation. GPS Solut 20(3):573–585CrossRefGoogle Scholar
  14. Li L, Jia C, Zhao L, Yang F, Li Z (2017a) Integrity monitoring-based ambiguity validation for triple-carrier ambiguity resolution. GPS Solut 21(2):797–810CrossRefGoogle Scholar
  15. Li L, Wang H, Jia C, Zhao L, Zhao Y (2017b) Integrity and continuity allocation for the RAIM with multiple constellations. GPS Solut 21(4):1503–1513CrossRefGoogle Scholar
  16. Ochieng W, Sauer K, Walsh D, Brodin G, Griffin S, Denny M (2003) GPS integrity and potential impact on aviation safety. J Navig 56(1):51–65CrossRefGoogle Scholar
  17. Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82(8):473–492CrossRefGoogle Scholar
  18. Oehler V, Luongo F, Trautenberg HL, Boyero J-P, Krueger J, Rang T (2005) The Galileo integrity concept and performance. In: Proceedings of ION GNSS 2005, Institute of Navigation, Fort Worth, pp 604–615Google Scholar
  19. Parkins A (2011) Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm. GPS Solut 15(4):391–402CrossRefGoogle Scholar
  20. Parkinson B, Spilker J, Axelrad P, Enge P (1996) Global positioning system: theory and applications, vol II. American Institute of Aeronautics and Astronautics Inc, WashingtonCrossRefGoogle Scholar
  21. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612CrossRefGoogle Scholar
  22. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73(11):587–593CrossRefGoogle Scholar
  23. Teunissen PJG (2001) The probability distribution of the ambiguity bootstrapped GNSS baseline. J Geod 75(5–6):267–275CrossRefGoogle Scholar
  24. Teunissen PJG (2004) Penalized GNSS ambiguity resolution. J Geod 78(4):235–244CrossRefGoogle Scholar
  25. Teunissen PJG, Verhagen S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Surv Rev 41(312):138–151CrossRefGoogle Scholar
  26. Wang L, Verhagen S (2014) A new ambiguity acceptance test threshold determination method with controllable failure rate. J Geod 89(4):361–375CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liang Li
    • 1
    • 2
  • Haodong Shi
    • 1
  • Chun Jia
    • 1
  • Jianhua Cheng
    • 1
  • Hui Li
    • 1
  • Lin Zhao
    • 1
  1. 1.College of AutomationHarbin Engineering UniversityHarbinChina
  2. 2.Academy of Opto-electronicsChinese Academy of SciencesBeijingChina

Personalised recommendations