Skip to main content
Log in

The circadian pattern of cardiac autonomic modulation and obesity in adolescents

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

To assess the impact of obesity and population attributes on the circadian pattern of cardiac autonomic modulation (CAM) in a population-based sample of adolescents.

Methods

We used data from 421 adolescents who completed the follow-up exam in the Penn State Children Cohort study. CAM was assessed by heart rate variability (HRV) analysis of beat-to-beat, normal R–R intervals from a 24-hour ECG, on a 30-minute basis. The HRV indices included frequency-domain (HF, LF, and LF/HF ratio) and time-domain (SDNN, RMSSD, and HR) variables. Nonlinear mixed-effect models were used to calculate a cosine periodic curve, each having three parameters quantifying its circadian period: M (mean levels of the HRV variables), Â (amplitude of the oscillation), and θ (the time of the highest oscillation).

Results

The mean (SD) age was 16.9 (2.2) years, with 54 % male and 77 % white. The mean BMI percentile was 66, with 16 % obese (BMI percentile ≥ 95). Overall, HF (a marker of parasympathetic modulation) gradually increased from the late afternoon, reached peak amplitude around 3 a.m., and then decreased throughout the daytime until late afternoon. In contrast, obesity had adverse effects on all circadian parameters. The age, sex and race showed varying differences on the CAM circadian parameters. The adjusted means (95 %Cls) of M, Â, and θ for HF were 5.99 (5.79–6.19), 0.77 (0.66–0.89), 3:15 (2:15–4:15) a.m., and 6.21 (6.13–6.29), 0.66 (0.61–0.70), 2:45 (2:30–3:15) a.m. for obese and non-obese subjects, respectively.

Conclusion

The circadian pattern of CAM can be quantified by the three cosine parameters. Obesity is associated with lower HRV even in young individuals like children/adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crowley DI, Khoury PR, Urbina EM, Ippisch HM, Kimball TR (2011) Cardiovascular impact of the pediatric obesity epidemic: higher left ventricular mass is related to higher body mass index. J Pediatr 158(709–714):e1

    PubMed  Google Scholar 

  2. Bibbins-Domingo K, Coxson P, Pletcher MJ, Lightwood J, Goldman L (2007) Adolescent overweight and future adult coronary heart disease. N Engl J Med 357:2371–2379

    Article  CAS  PubMed  Google Scholar 

  3. Koopman LP, McCrindle BW, Slorach C et al (2012) Interaction between myocardial and vascular changes in obese children: a pilot study. J Am Soc Echocardiogr 25(401–410):e1

    PubMed  Google Scholar 

  4. Kleiger RE, Stein PK, Bigger JT (2005) Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol 10:88–101

    Article  PubMed  Google Scholar 

  5. Liao D, Barnes RW, Chambless LE, Simpson RJ Jr, Sorlie P, Heiss G (1996) Population based study of heart rate variability and prevalent myocardial infarction—The ARIC Study. J Electrocardiol 29:189–198

    Article  CAS  PubMed  Google Scholar 

  6. Cote AT, Harris KC, Panagiotopoulos C, Sandor GG, Devlin AM (2013) Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol 62(15):1309–1319

    Article  PubMed  Google Scholar 

  7. Tonhajzerova I, Javorka M, Trunkvalterova Z et al (2008) Cardio-respiratory interaction and autonomic dysfunction in obesity. J Physiol Pharmacol 59(6):709–718

    PubMed  Google Scholar 

  8. Vanderlei LC, Pastre CM, Freitas IF Jr, Godoy MF (2010) Analysis of cardiac autonomic modulation in obese and eutrophic children. Clinics 65:789–792

    Article  PubMed Central  PubMed  Google Scholar 

  9. Rodriguez-Colon SM, Bixler EO, Li X, Vgontzas AN, Liao D (2011) Obesity is associated with impaired cardiac autonomic modulation in children. Int J Pediatr Obes 6:128–134

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lazarova Z, Tonhajzerova I, Trunkvalterova Z et al (2009) Baroreflex sensitivity is reduced in obese normotensive children and adolescents. Can J Physiol Pharmacol 87:565–571

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Shaffer ML, Rodríguez-Colón SM et al (2011) Systemic inflammation and circadian rhythm of cardiac autonomic modulation. Auton Neurosci 162:72–76

    Article  PubMed Central  PubMed  Google Scholar 

  12. Rodríguez-Colón SM, Li X, Shaffer ML et al (2010) Insulin resistance and circadian rhythm of cardiac autonomic modulation. Cardiovasc Diabetol 9:85

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kardelen F, Akcurin G, Ertug H, Akcurin S, Bircan I (2006) Heart rate variability and circadian variations in type 1 diabetes mellitus. Pediatr Diabetes 7:45–50

    Article  PubMed  Google Scholar 

  14. Li X, Shaffer ML, Rodriguez-Colon S et al (2011) The circadian pattern of cardiac autonomic modulation in a middle-aged population. Clin Auton Res 21(3):143–150

    Article  PubMed Central  PubMed  Google Scholar 

  15. Nakagawa M, Iwao T, Ishida S et al (1998) Circadian rhythm of the signal averaged electrocardiogram and its relation to heart rate variability in healthy subjects. Heart 79:493–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Massin MM, Maeyns K, Withofs N, Ravet F, Gerard P (2000) Circadian rhythm of heart rate and heart rate variability. Arch Dis Child 83:179–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bilan A, Witczak A, Palusiński R, Myśliński W, Hanzlik J (2005) Circadian rhythm of spectral indices of heart rate variability in healthy subjects. J Electrocardiol 38(3):239–243

    Article  PubMed  Google Scholar 

  18. Bixler EO, Vgontzas AN, Lin HM et al (2008) Blood pressure associated with sleep-disordered breathing in a population sample of children. Hypertension 52(5):841–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  20. Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2004) Software for advanced HRV analysis. Comput Methods Programs Biomed 76(1):73–81

    Article  PubMed  Google Scholar 

  21. D’Negri CE, Marelich L, Vigo D et al (2005) Circadian periodicity of heart rate variability in hospitalized angor patients. Clin Auton Res 15:223–232

    Article  PubMed  Google Scholar 

  22. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  23. Faulkner MS, Hathaway D, Tolley B (2003) Cardiovascular autonomic function in healthy adolescents. Heart Lung 32(1):10–22

    Article  PubMed  Google Scholar 

  24. Wang X, Thayer JF, Treiber F, Snieder H (2005) Ethnic differences and heritability of heart rate variability in African- and European American youth. Am J Cardiol 96(8):1166–1172

    Article  PubMed  Google Scholar 

  25. Antelmi I, de Paula RS, Shinzato AR, Peres CA, Mansur AJ, Grupi CJ (2004) Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol 93:381–385

    Article  PubMed  Google Scholar 

  26. Reed KE, Warburton DE, Whitney CL, McKay HA (2006) Differences in heart rate variability between Asian and Caucasian children living in the same Canadian community. Appl Physiol Nutr Metab 31(3):277–282

    Article  PubMed  Google Scholar 

  27. Franke WD, Lee K, Buchanan DB, Hernandez JP (2004) Blacks and whites differ in responses, but not tolerance, to orthostatic stress. Clin Auton Res 14:19–25

    Article  PubMed  Google Scholar 

  28. Liao D, Sloan RP, Cascio WE et al (1998) The multiple metabolic syndrome is associated with lower heart rate variability – The ARIC Study. Diabetes Care 21:2116–2222

    Article  CAS  PubMed  Google Scholar 

  29. Dekker JM, Crow RS, Folsom AR et al (2000) Low heart rate variability in a two minute rhythm strip predicts risk of coronary heart disease and mortality from several causes—The ARIC Study. Circulation 102:1239–1244

    Article  CAS  PubMed  Google Scholar 

  30. Liao D, Carnethon MR, Evans GW, Cascio WE, Heiss G (2002) Lower Heart Rate Variability Is Associated with the Development of Coronary Heart Disease in Individuals with Diabetes - The ARIC Study. Diabetes 51:3524–3531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the adolescents and their parents who participated in this study. This project was supported by National Institutes of Health (NIH) Grants: 1 R01 HL 097165, R01 HL63772, R21HL087858, and the Penn State CTSI Grant UL Tr000127. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duanping Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Colón, S., He, F., Bixler, E.O. et al. The circadian pattern of cardiac autonomic modulation and obesity in adolescents. Clin Auton Res 24, 265–273 (2014). https://doi.org/10.1007/s10286-014-0257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-014-0257-7

Keywords

Navigation