Skip to main content

Advertisement

Log in

Duloxetine: mechanism of action at the lower urinary tract and Onuf’s nucleus

  • REVIEW ARTICLE
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract.

Urinary incontinence is the inability to willingly control bladder voiding. Stress urinary incontinence (SUI) is the most frequently occurring type of incontinence in women. No widely accepted or approved drug therapy is yet available for the treatment of stress urinary incontinence. Numerous studies have implicated the neurotransmitters, serotonin and norepinephrine in the central neural control of the lower urinary tract function. The pudendal somatic motor nucleus of the spinal cord is densely innervated by 5HT and NE terminals. Pharmacological studies confirm central modulation of the lower urinary tract activity by 5HT and NE receptor agonists and antagonists. Duloxetine is a combined serotonin/norepinephrine reuptake inhibitor currently under clinical investigation for the treatment of women with stress urinary incontinence. Duloxetine exerts balanced in vivo reuptake inhibition of 5HT and NE and exhibits no appreciable binding affinity for receptors of neurotransmitters. The action of duloxetine in the treatment of stress urinary incontinence is associated with reuptake inhibition of serotonin and norepinephrine at the presynaptic neuron in Onuf’s nucleus of the sacral spinal cord. In cats, whose bladder had initially been irritated with acetic acid, a dose–dependent improvement of the bladder capacity (5–fold) and periurethral EMG activity (8–fold) of the striated sphincter muscles was found. In a double blind, randomized, placebocontrolled, clinical trial in women with stress urinary incontinence, there was a significant reduction in urinary incontinence episodes under duloxetine treatment. In summary, the pharmacological effect of duloxetine to increase the activity of the striated urethral sphincter together with clinical results indicate that duloxetine has an interesting therapeutic potential in patients with stress urinary incontinence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams P, Freeman R, Anderstrom C, Mattiasson A (1998) Tolterodine, a new antimuscarinic agent: as effective but better tolerated than oxybutynin in patients with an overactive bladder. Br J Urol 81:801–810

    CAS  PubMed  Google Scholar 

  2. Andersson KE (2000) Drug therapy for urinary incontinence. Baillieres Best Pract Res Clin Obstet Gynaecol 14:291–313

    CAS  PubMed  Google Scholar 

  3. deGroat W, Ryall R (1967) An exciting action of 5-hydroxytryptamine on sympathetic preganglionic neurons. Exp Brain Res 3:299–305

    CAS  PubMed  Google Scholar 

  4. Dmochowski RR, Miklos JR, Norton PA, Zinner NR, Yalcin I, Bump RC; Duloxetine Urinary Incontinence Study Group (2003) Duloxetine versus Placebo for the treatment of North American women with stress urinary incontinence. J Urol 170:1259–1263

    Google Scholar 

  5. Downie J, Espey M, Gajewski J (1991) Alpha 2-adrenoceptors not imidazole receptors mediate depression of a sacral spinal reflex in the cat. Eur J Pharmacol 195:301–304

    CAS  PubMed  Google Scholar 

  6. Downie J, Bialik G (1988) Evidence for a spinal site of action of clonidine on somatic and viscerosomatic reflex activity evoked on the pudendal nerve in cats. J Pharmacol Exp Ther 246: 352–358

    CAS  PubMed  Google Scholar 

  7. Durant P, Lucas P, Yaksh T (1988) Micturition in the unanesthetized rat: spinal vs. peripheral pharmacology of the adrenergic system. J Pharmacol Exp Ther 245:426–435

    CAS  PubMed  Google Scholar 

  8. Espey M, Downie J, Fine A (1992) Effect of 5-HT receptor and adrenoceptor antagonists on micturition in conscious cats. Eur J Pharmacol 221:167–170

    Article  CAS  PubMed  Google Scholar 

  9. Fuller R, Hemrick-Leucke S, Snoddy H (1994) Effects of duloxetine, an antidepressant drug candidate, on concentrations of monoamines and their metabolites in rats and mice. J Pharmacol Exp Ther 269:132–136

    Google Scholar 

  10. Gajewski J, Downie J, Awad S (1984) Experimental evidence for a central nervous system site of action in the effect of alpha-adrenergic blockers on the external urinary sphincter. J Urol 132:403–409

    CAS  PubMed  Google Scholar 

  11. Goldstein DJ, Lu Y, Detke MJ, et al. (2004) Duloxetine in the treatment of depression: a double-blind placebocontrolled comparison with paroxetine. Br J Psychiatry (in press)

    Google Scholar 

  12. Goldstein DJ, Mallinckrodt C, Lu Y, Demitrack MA (2002) Duloxetine in the treatment of major depression disorder: a double-blind clinical trial. J Clin Psychiatry 63:225–231

    PubMed  Google Scholar 

  13. Harad T, Constantinou C (1993) The effect of alpha 2 agonists and antagonists on the lower urinary tract of the rat. J Urol 149:159–164

    PubMed  Google Scholar 

  14. Hosoya Y, Okado N, Suiura Y, Kohno K (1991) Coincidence of “ladder-like patterns” in distributions of monoaminergic terminals and sympathetic preganglionic neurons in the rat spinal cord. Exp Brain Res 86:224–228

    CAS  PubMed  Google Scholar 

  15. Jost WH (ed) (1997) Neurologie des Beckenbodens. London, Glasgow, Weinheim: Chapman & Hall

  16. Katofiasc MA, Nissen J, Audia JE, Thor KB (2002) Comparison of the effects of serotonin selective, norepinephrine selective, and dual serotonin and norepinephrine reuptake inhibitors on lower urinary tract function in cats. Life Sci 71:1227–1236

    Article  CAS  PubMed  Google Scholar 

  17. Kojima M, Matsuura T, Kimura H, Nojyo Y, Sano Y (1984) Fluorescence histochemical study on the noradrenergic control to the anterior column of the spinal lumbosacral segments of the rat and dog, with special reference to motoneurons innervating the perineal striated muscles (Onuf’s nucleus). Histochemistry 81:237–241

    CAS  PubMed  Google Scholar 

  18. Kojima M, Takeuchi Y, Goto M, Sano Y (1982) Immunohistochemical study on the distribution of serotonin fibers in the spinal cord of the dog. Cell Tissue Res 226:477–491

    Google Scholar 

  19. Kojima M, Takeuchi Y, Goto M, Sano Y (1983) Immunohistochemical study on the localization of serotonin fibers and terminals in the spinal cord of the monkey (Macaca fuscata). Cell Tissue Res 229:23–36

    CAS  Google Scholar 

  20. Kontani H, Maruyama I, Sakal T (1992) Involvement of alpha 2-adrenoceptors in the sacral micturition reflex in rats. Jpn J Pharmacol 60:363–368

    CAS  PubMed  Google Scholar 

  21. Krier J, Thor K, DeGroat W (1979) Effects of clonidine on the lumbar sympathetic pathways to the large intestine and urinary bladder of the cat. Eur J Pharmacol 59:47–53

    CAS  PubMed  Google Scholar 

  22. Mannen T, Iwata M, Toyokura Y, Nagashima K (1977) Preservation of a certain motoneuron group of the sacral spinal cord in amyotrophic sclerosis: its clinical significance. J Neurol Neurosurg Psychiatry 40:464–469

    CAS  PubMed  Google Scholar 

  23. Millard RJ, Moore K, Rencken R, Yalcin I, Bump RC; For the Duloxetine UI Study Group (2004) Duloxetine vs placebo in the treatment of stress urinary incontinence: a four-continent randomized clinical trial. BJU Int 93:311–318

    Article  CAS  PubMed  Google Scholar 

  24. Mizukawa K (1980) The segmental detailed topographical distribution of monoaminergic terminals and their pathways in the spinal cord of the cat. Anat Anz 147:125–144

    CAS  PubMed  Google Scholar 

  25. Norton P, Zinner N, Yalcin I, Bump R (2002) Duloxetine versus placebo in the treatment of stress urinary incontinence. Am J Obstet Gynecol 187:40–48

    Article  CAS  PubMed  Google Scholar 

  26. Onufrowicz B (1889) Notes on the arrangement and function of the cell groups of the sacral region of the spinal cord. J Nerv Men Dis 26:498–504

    Google Scholar 

  27. Onufrowicz B (1890) On the arrangement and function of the cell groups of the sacral region of the sacral spinal cord in man. Arch Neurol Psychopathol 3:387–411

    Google Scholar 

  28. Probst A, Cortes R, Palacios J (1984) Distribution of alpha 2 adrenergic receptors in the human brainstem: An autoradiographic study using [3H]paminoclonidine. Eur J Pharmacol 106:477–488

    Article  CAS  PubMed  Google Scholar 

  29. Pullen AH, Tucker D, Martin JE (1997) Morphological and morphometric characterization of Onuf ’s nucleus in the spinal cord in man. J Anat 191:201–213

    Article  PubMed  Google Scholar 

  30. Rajaofetra N, Passagia J, Marlier L, Poulat P, Pellas F, Sandillon F, Verschuere B, Gouy D, Geffard M, Privat A (1992) Serotonergic, noradrenergic, and peptidergic innervation of Onuf ’s nucleus of normal and transected spinal cords of baboons (Papio papio). J Comp Neurol 318:1–17

    PubMed  Google Scholar 

  31. Roudet C, Savasta M, Feuerstein C (1993) Normal distribution of alpha-1- adrenoceptors in the rat spinal cord and its modification after noradrenergic denervation: A quantitative autoradiographic study. J Neurosci Res 34:44–53

    PubMed  Google Scholar 

  32. Schaffer J, Fantl JA (2000) Physiology of the lower urinary tract and the mechanism of continence. In: Lentz GM (ed) Urogynecology: London: Arnold, pp 25–43

  33. Thor K, Hisamitsu T, DeGroat W (1990) Unmasking of a neonatal somatovesical reflex in adult cats by the serotonin autoreceptor agonist 5-methoxy-N, N-dimethyltryptamine. Brain Res Dev Brain Res 54:35–42

    Article  Google Scholar 

  34. Thor K, Nickolaus S, Helke C (1993) Autoradiographic localization of 5-hydroxytryptamine1A, 5-hydroxytryptamine1B, and 5-hydroxytryptamine1C/ 2 binding sites in the rat spinal cord. Neuroscience 55:235–252

    Article  CAS  PubMed  Google Scholar 

  35. Thor KB, Katofiasc MA (1995) Effects of duloxetine, a combined serotonin and norepinephrine reuptake inhibitor, on central neural control of lower urinary tract function in the chloralose-anesthetized female cat. J Pharmacol Exp Ther 274:1014–1024

    CAS  PubMed  Google Scholar 

  36. Thor KB (2003) Serotonin and norepinephrine involvement in efferent pathways to the urethral rhabdosphincter: implications for treating stress urinary incontinence. Urology 62:3–9

    Google Scholar 

  37. Thor KB (2002) Neurourology: exploring new horizons. Advanced Studies in Medicine 2:677–680

    Google Scholar 

  38. Van Kerrebroeck P, Abrams P, Lange R, Slack M, Wyndaele JJ, Yalcin I, Bump RC, for the Duloxetine UI Study Group (2004) Duloxetine versus placebo in the treatment of European and Canadian women with stress urinary incontinence. B J Obstet Gynaecol 111:249–257

    Google Scholar 

  39. Wong D, Bymaster F, Mayle D, Reid L, Krushinski J, Robertson D (1993) LY24868, a new inhibitor of serotonin and norepinephrine uptake. Neuropsychopharmacology 8:23–33

    CAS  PubMed  Google Scholar 

  40. Yoshimura N, Sasa M, Yoshida O, Takaor S (1990) Mediation of micturition reflex by central norepinephrine from the locus coeruleus in the cat. J Urol 143:840–843

    CAS  PubMed  Google Scholar 

  41. Zinner N, Thor KB, Yalcin I, DeBrota D, Faries D, Riedl P (1998) Efficacy and safety of duloxetine in stress urinary incontinence patients. Proceedings of the 19th Annual Meeting of Urodynamics Society; 1998 May 30; San Diego, Calif. San Diego: The Society

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Jost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jost, W., Marsalek, P. Duloxetine: mechanism of action at the lower urinary tract and Onuf’s nucleus. Clin Auton Res 14, 220– 227 (2004). https://doi.org/10.1007/s10286-004-0197-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-004-0197-8

Keywords

Navigation