Skip to main content

Drug Influence on Lower Urinary Tract

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 607 Accesses

Abstract

Urinary incontinence is a major psychosocial, medical, and economic problem. The most common condition to be treated pharmacologically is incontinence due to detrusor instability. The response of the urinary bladder to filling with increasing volumes of fluid (cystometrogram) is a common procedure for evaluating bladder function in both animals and humans. The response of the vesicourethral complex can be arbitrarily divided into the collection and expulsion phases. The nervous control of the detrusor and the internal and the external sphincter has been reviewed by Kuro (1965). A detailed description of the nervous control of the urinary bladder of the cat has been given by de Groat (1975). The pharmacology of lower urinary tract muscles and penile erectile tissues has been reviewed by Anderson (1993). Ferguson and Christopher (1996) reviewed urine bladder function and drug development. Urine storage and timely expulsion of bladder content are produced through the coordinated activation of a series of reflexes involving cholinergic, sympathetic, and, possibly, purinergic, serotonergic, and peptidergic innervation. In view of this complexity, in vivo models were developed for the quantitative analysis of the effects of drugs on the function of the vesicourethral complex (Maggi et al. 1983, 1985, 1986, 1987a, b, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

In Vivo Studies

  • Anderson KE (1993) Pharmacology of lower urinary tract muscles and penile erectile tissues. Pharmacol Rev 46:253–308

    Google Scholar 

  • Angelico P, Guarneri L, Fredella B, Testa R (1992) In vivo effects of different antispasmodic drugs on the rat bladder contractions induced by topically applied KCl. J Pharmacol Methods 27:33–39

    Google Scholar 

  • Argentieri TM, Argentieri MA (2002) Optical micturition interval monitor for experimental animals. J Pharmacol Toxicol Methods 48:147–152

    Article  CAS  PubMed  Google Scholar 

  • Conte B, D’Aranno V, Santicioli P, Giuliani S, Mancinelli A, Furio M, Maggi CA, Meli A (1988) A new method for recording cystometrograms in conscious, freely moving rats. J Pharmacol Methods 19:57–61

    Article  CAS  PubMed  Google Scholar 

  • Conte B, Maggi CA, Parlani M, Lopez G, Manzini S, Giachetti A (1991) Simultaneous recording of vesical and urethral pressure in urethane-anesthetized rats: effect of neuromuscular blocking agents on the activity of the external urethral sphincter. J Pharmacol Methods 26:161–171

    Article  CAS  PubMed  Google Scholar 

  • De Groat WC (1975) Nervous control of the urinary bladder of the cat. Brain Res 87:201–211

    Article  PubMed  Google Scholar 

  • Dray A (1995) The rat urinary bladder. A novel preparation for the investigation of central opioid activity in vivo. J Pharmacol Methods 13:157–165

    Article  Google Scholar 

  • Ferguson D, Christopher N (1996) Urine bladder function and drug development. Trends Pharmacol Sci 17:161–165

    Article  CAS  PubMed  Google Scholar 

  • Häbler HJ, Jänig W, Koltzenburg M (1990) Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol 425:545–562

    Article  PubMed Central  PubMed  Google Scholar 

  • Häbler HJ, Jänig W, Koltzenburg M (1992) Myelinated primary afferents of the sacral spinal cord responding to slow filling and distension of the cat urinary bladder. J Physiol 463:449–460

    Article  Google Scholar 

  • Harada T, Levounis P, Constantinou CE (1992) Rapid evaluation of the efficacy of pharmacologic agents and their analogs in enhancing bladder capacity and reducing the voiding frequency. J Pharmacol Toxicol Methods 27:119–126

    Article  CAS  PubMed  Google Scholar 

  • Horváth G, Morvay Z, Kovács M, Szikszay M, Benedek G (1994) An ultrasonic method for the evaluation of dexmedetomidine on micturition in intact rats. J Pharmacol Toxicol Methods 32:215–218

    Article  PubMed  Google Scholar 

  • Imagawa JI, Akima M, Sakai K (1989) Functional evaluation of sympathetically mediated responses in vivo lower urinary tract of dogs. J Pharmacol Methods 22:103–111

    Article  CAS  PubMed  Google Scholar 

  • Kuro M (1965) Nervous control of micturition. Physiol Rev 45:425–494

    Google Scholar 

  • Maggi CA (1992) Prostanoids as local modulators of reflex micturition. Pharmacol Res 25:13–20

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Santicioli P, Grimaldi G, Meli A (1983) The effect of peripherally administered GABA on spontaneous contractions of rat urinary bladder in vivo. Gen Pharmacol 14:455–458

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Santicioli P, Furio M, Meli A (1985) Dual effects of clonidine on micturition reflex in urethane anesthetized rats. J Pharmacol Exp Ther 235:528–536

    Google Scholar 

  • Maggi CA, Santicioli P, Meli A (1986) The nonstop transvesical cystometrogram in urethane-anesthetized rats: a simple procedure for quantitative studies on the various phases of urinary bladder voiding cycle. J Pharmacol Methods 15:157–167

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Santicioli P, Meli A (1987a) Pharmacological studies on factors influencing the collecting phase of the cystometrogram in urethane-anesthetized rats. Drug Dev Res 10:157–170

    Article  CAS  Google Scholar 

  • Maggi CA, Giuliani S, Santicioli P, Abelli L, Regoli D, Meli A (1987b) Further studies on the mechanisms of the tachykinin-induced activation of the micturition reflex in rats: evidence for the involvement of the capsaicin-sensitive bladder mechanoreceptors. Eur J Pharmacol 136:189–205

    Article  CAS  PubMed  Google Scholar 

  • Moreau PM, Lees GE, Gross DR (1983) Simultaneous cystometry and uroflowmetry (micturition study) for evaluation of the caudal part of the urinary tract in dogs: reference values for healthy animals sedated with xylazine. Am J Vet Res 44:1774–1781

    CAS  PubMed  Google Scholar 

  • Noronha-Blob L, Prosser JC, Sturm BL, Lowe VC, Enna SJ (1991) (±)-Terodiline: an M1-selective muscarinic receptor antagonist. In vivo effects at muscarinic receptors mediating urinary bladder contraction, mydriasis and salivary secretion. Eur J Pharmacol 201:135–142

    Article  CAS  PubMed  Google Scholar 

  • Oyasu H, Yamamoto T, Sato N, Sawada T, Ozaki R, Mukai T, Ozaki T, Nishii M, Sato H, Fujiwara T, Tozuka Z, Koibuchi Y, Honbo T, Esumi K, Ohtsuka M, Shimomura K (1994) Urinary bladder-selective action of the new antimuscarinic compound vamicamide. Arzneim Forsch/Drug Res 44:1242–1249

    CAS  Google Scholar 

  • Peterson JS, Hanson RC, Noronha-Blob L (1989) In vivo cystometrogram studies in urethane-anesthetized and conscious guinea pigs. J Pharmacol Methods 21:231–241

    Article  CAS  PubMed  Google Scholar 

  • Pietra C, Poggesi E, Angelico P, Guarneri L, Testa R (1990) Effects of some antidepressants on the volume-induced reflex contractions of the rat urinary bladder: lack of correlation with muscarinic receptors activity. Pharmacol Res 22:421–432

    Google Scholar 

  • Postius S, Szelenyi I (1983) In vivo rat bladder: a new model to screen spasmolytic compounds. J Pharmacol Methods 9:53–61

    Article  CAS  PubMed  Google Scholar 

  • Seif C, Herberger B, Cherwon E, Martinez Portillo FJ, Molitor M, Stieglitz T, Bohler G, Zendler S, Junemann KP, Braun PM (2004) Urinary bladder volumetry by means of a single retrosymphysically implantable ultrasound unit. Neurourol Urodyn 23(7):680–684

    Article  CAS  PubMed  Google Scholar 

  • Tai C, Booth AM, de Groat WC, Roppolo JR (2004) Bladder and urethral sphincter responses evoked by microstimulation of S2 sacral spinal cord in spinal cord intact and chronic spinal cord injured cats. Exp Neurol 190:171–183

    Article  PubMed  Google Scholar 

  • Tillig B, Constantinou CE (1996) Videomicroscopic imaging of ureteral peristaltic function in rats during cystometry. J Pharmacol Toxicol Methods 35:191–202

    Article  CAS  PubMed  Google Scholar 

  • Yaksh TL, Durant PAC, Brent CR (1986) Micturition in rats: a chronic model for study of bladder function and effect of anesthetics. Am J Physiol 251 (Regulative Integrative Comp Physiol 20):R1177–R1185

    Google Scholar 

Studies on Renal Pelvis

  • Bigoni R, Guiliani S, Calo G, Rizzi A, Guerrini R, Salvadori S, Regoli D, Maggi CA (1999) Characterization of nociceptin receptors in the periphery: in vitro and in vivo studies. Naunyn-Schmiedeberg’s Arch Pharmacol 359:160–167

    Article  CAS  Google Scholar 

  • Davidson ME, Lang RJ (2000) Effects of selective inhibitors of cyclo-oxygenase-1 (COX-1) and cyclo-oxygenase-2 (COX-2) on the spontaneous myogenic contractions in the upper urinary tract of the guinea-pig and rat. Br J Pharmacol 129:661–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giuliani S, Maggi CA (1996) Inhibition of tachykinin release from peripheral endings of sensory nerves by nociceptin, a novel opioid peptide. Br J Pharmacol 118:1567–1569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimoto Y, Constantinou CE (1990) Effects of (1-desamino-8-D-arginine) vasopressin and papaverine on rabbit renal pelvis. Eur J Pharmacol 175:359–362

    Article  CAS  PubMed  Google Scholar 

  • Kimoto Y, Constantinou CE (1991) Regional effects of indomethacin, acetylsalicylic acid and SC-19220 on the contractility of rabbit renal pelvis (pacemaker regions and pelviureteric junction). J Urol 146:433–438

    CAS  PubMed  Google Scholar 

  • Knepper MA, Saidel GM, Hascall VC, Dwyer T (2003) Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. Am J Physiol Renal Physiol 284:F433–F446

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Tashima Y, Morita T (1992) Effects of dobutamine and terbutaline on adenylate cyclase activity and cyclic AMP content in the renal pelvis of rabbits. Urol Int 49:146–150

    Article  CAS  PubMed  Google Scholar 

  • Lang RJ, Zhang Y (1996) The effects of K+ channel blockers on the spontaneous electrical and contractile activity in the proximal renal pelvis of the guinea pig. J Urol 155:332–336

    Article  CAS  PubMed  Google Scholar 

  • Lang RJ, Zhang Y, Exintaris B, Vogalis F (1995) Effects of nerve stimulation on the spontaneous action potentials recorded in the proximal renal pelvis of the guinea pig. Urol Res 23:343–350

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S (1991) The neurotransmitter role of CGRP in the rat and guinea pig ureter: effect of a CGRP agonist and species-related differences in the action of omega conotoxin on CGRP release from primary afferents. Neuroscience 43:261–271

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S (1992) Non-adrenergic, non-cholinergic excitatory innervation of the guinea pig renal pelvis: Involvement of capsaicin-sensitive primary afferent neurons. J Urol 147:1394–1398

    CAS  PubMed  Google Scholar 

  • Maggi CA, Patacchini R, Eglezos A, Quartara L, Giuliani S, Giachetti A (1992a) Tachykinin receptors in the guinea pig renal pelvis: activation by exogenous and endogenous tachykinins. Br J Pharmacol 107:27–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maggi CA, Santicioli P, Del Bianco E, Giuliani S (1992b) Local motor responses to bradykinin and bacterial chemotactic peptide formyl-methionyl-leucyl-phenylalanine (FMLP) in the guinea pig isolated renal pelvis and ureter. J Urol 14:1944–1950

    Google Scholar 

  • Maggi CA, Theodorsson E, Santicioli P, Giuliani S (1992c) Tachykinins and calcitonin gene-related peptide as co-transmitters in local responses produced by sensory nerve activation in the guinea pig isolated renal pelvis. Neuroscience 46:549–559

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S, Santicioli P (1994) Effect of cromakalim and glibenclamide on spontaneous and evoked motility of the guinea pig isolated renal pelvis and ureter. Br J Pharmacol 111:687–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S, Santicioli P (1995) CGRP inhibits electromechanical coupling in the guinea pig isolated renal pelvis. Naunyn-Schmiedeberg’s Arch Pharmacol 352:529–537

    Article  CAS  Google Scholar 

  • Patacchini R, Santicioli P, Zagorodnyuk V, Lazzeri M, Turini D, Maggi CA (1998) Excitatory motor and electrical effects produced by tachykinins in the human and guinea pig isolated ureter and guinea pig renal pelvis. Br J Pharmacol 125:987–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santicioli P, Maggi CA (1997) Pharmacological modulation of electromechanical coupling in the proximal and distal regions of the guinea pig pelvis. J Auton Pharmacol 17:43–52

    Article  CAS  PubMed  Google Scholar 

  • Santicioli P, Maggi CA (1998) Myogenic and neurogenic factors in the control of pyeloureteral motility and ureteral peristalsis. Pharmacol Rev 50:684–721

    Google Scholar 

  • Santicioli P, Carganico G, Meini S, Giuliani S, Giachetti A, Maggi CA (1995) Modulation of stereoselective inhibition of cyclo-oxygenase of electromechanical coupling in the guinea pig isolated renal pelvis. Br J Pharmacol 114:1149–1158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seki N, Suzuki H (1990) Electrical properties of smooth muscle cell membrane in renal pelvis of rabbits. Am J Physiol 259 (Renal, Fluid, Electrolyte Physiol 28):F888–F894

    Google Scholar 

  • Teele ME, Lang RJ (1998) Stretch-evoked inhibition of spontaneous migrating contractions in whole mount preparation of the guinea pig upper urinary tract. Br J Pharmacol 123:1143–1153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Lang RJ (1994) Effect of intrinsic prostaglandins on the spontaneous contractile and electrical activity of the proximal renal pelvis of the guinea pig. Br J Pharmacol 113:431–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zwergel U, Zwergel T, Ziegler M (1991) Effects of prostaglandins and prostaglandin synthetase inhibitors on acutely obstructed kidneys in the dog. Urol Int 47:64–69

    Article  CAS  PubMed  Google Scholar 

Propagation of Impulses in the Guinea Pig Ureter

  • Brading AF, Burdyga TV, Scripnyuk ZD (1983) The effects of papaverine on the electrical and mechanical activity of the guinea pig ureter. J Physiol 334:79–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meini S, Santicioli P, Maggi CA (1995) Propagation of impulses in the guinea pig ureter and its blockade by calcitonin-gene-related peptide. Naunyn-Schmiedeberg’s Arch Pharmacol 351:79–86

    Article  CAS  Google Scholar 

  • Shuba MF (1977) The effect of sodium-free and potassium-free solutions, ionic current inhibitors and ouabain on electrophysiological properties of smooth muscle of guinea pig ureter. J Physiol 264:837–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomiyama Y, Wanajo I, Yamazaki Y, Murakami M, Kojima M, Shibata N (2003) Functional muscarinic cholinoceptors in the isolated canine ureter. Naunyn-Schmiedeberg’s Arch Pharmaacol 367:348–352

    Article  CAS  Google Scholar 

  • Weiss RM (1992) Physiology and pharmacology of renal pelvis and ureter. In: Walsh PC, Retik AB, Stamey TA, Vaughan ED (eds) Campell’s urology, vol 1. WB Saunders, Philadelphia, pp 113–144

    Google Scholar 

  • Weiss R, Mevissen M, Hauser DS, Scholtysik G, Portier CJ, Walter B, Studer UE, Danuser HJ (2002) Inhibition of human and pig ureter motility in vitro and in vivo by the K+ channel openers PKF 217-744b and nicorandil. J Pharm Exper Ther 302:651–658

    Article  CAS  Google Scholar 

Studies on Urinary Bladder and Internal Urethral Sphincter

  • Anderson GF (1978) The rabbit detrusor muscle: a unique in-vitro smooth muscle preparation. J Pharmacol Methods 1:177–182

    Article  CAS  Google Scholar 

  • Andersson KE, Mattiasson A, Sjögren S (1983) Electrically induced relaxation of the noradrenaline contracted isolated urethra from rabbit and man. J Urol 129:210–214

    CAS  PubMed  Google Scholar 

  • Andersson KE, Pascual AG, Persson K, Forman A, Tøttrup A (1992) Electrically-induced, nerve-mediated relaxation of rabbit urethra involves nitric oxide. J Urol 147:253–259

    CAS  PubMed  Google Scholar 

  • Angelico P, Guarneri L, Fredella B, Testa R (1992) In vivo effects of different antispasmodic drugs on the rat bladder contractions induced by topically applied KCl. J Pharmacol Methods 27:33–39

    Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 14:48–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birder LA, Apodaca G, DeGroat WC, Kanai AJ (1998) Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in the urinary bladder. Am J Physiol 275:F226–F229

    CAS  PubMed  Google Scholar 

  • Brauerman AS, Doumanian LR, Ruggieri MR (2006) M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. II Denervated rat bladder. J Pharm Exper Ther 316:875–880

    Article  Google Scholar 

  • Burnstock G, Cocks T, Crowe R, Kasakov L (1978) Purinergic innervation of the guinea pig urinary bladder. Br J Pharmacol 63:125–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhattiwala AS, Dave KC (1975) Isolated innervated, rat and guinea pig hemi-urinary bladder preparations. Ind J Physiol Pharmacol 19:164–166

    CAS  Google Scholar 

  • Downie JW, Karmazyn M (1984) Mechanical trauma to bladder epithelium liberates prostanoids which modulate neurotransmission in rabbit detrusor muscle. J Pharm Exp Ther 230:445–449

    CAS  Google Scholar 

  • Drake MJ, Harvey IJ, Gillespie JI (2003) Autonomous activity in the isolated guinea pig bladder. Exp Physiol 88:19–30

    Article  CAS  PubMed  Google Scholar 

  • Ferguson DR, Marchant JS (1995) Inhibitory actions of GABA on rabbit urinary bladder muscle strips: mediation by potassium channels. Br J Pharmacol 115:81–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hills J, Meldrum LA, Klarskov P, Burnstock G (1984) A novel non-adrenergic, non-cholinergic nerve-mediated relaxation of the pig bladder neck: an examination of possible neurotransmitter candidates. Eur J Pharmacol 99:287–293

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Nakagawa C (1986) Alpha-1 adrenoceptor antagonist effects of the optical isomers of YM-12617 in rabbit lower urinary tract and prostate. J Pharmacol Exp Ther 239:512–516

    CAS  PubMed  Google Scholar 

  • Hukovic S, Rand MJ, Vanov S (1965) Observations on an isolated, innervated preparation of rat urinary bladder. Br J Pharmacol 24:178–188

    CAS  Google Scholar 

  • Inci K, Ismailoglu UB, Sahin A, Sungur A, Sahin-Erdemli I (2003) The effect of inflammation on rat urinary bladder-dependent relaxation in coaxial bioassay system. Naunyn-Schmiedebergs Arch Pharmacol 367:547–552

    Article  CAS  PubMed  Google Scholar 

  • Khanna OP, diGregorio GJ, Sample RG, McMichael R (1977) Histamine receptors in urethrovesical smooth muscle. Urology 10:375–381

    Article  CAS  PubMed  Google Scholar 

  • Khanna OP, Barbieri EJ, McMichael RF (1981) The effects of adrenergic agonists and antagonists on vesicourethral smooth muscle of rabbits. J Pharmacol Exp Ther 216:95–100

    CAS  PubMed  Google Scholar 

  • Klarskov P (1987) Non-cholinergic, non-adrenergic inhibitory nerve responses of bladder outlet smooth muscle in vitro. Br J Urol 60:337–342

    Article  CAS  PubMed  Google Scholar 

  • Kunisawa Y, Kawabe K, Nijima T, Honda K, Takenaka T (1985) A pharmacological study of alpha adrenergic receptor subtypes in smooth muscle of human urinary bladder base and prostatic urethra. J Urol 134:396–398

    CAS  PubMed  Google Scholar 

  • Maggi CA, Santicioli P, Furio M, Meli A (1985) Dual effects of clonidine on micturition reflex in urethane anesthetized rats. J Pharmacol Exp Ther 235:528–536

    Google Scholar 

  • Mapp CE, Chitano P, Fabbri LM, Patacchini R, Maggi CA (1990) Pharmacological modulation of the contractile response to toluene diisocyanate in the rat isolated urinary bladder. Br J Pharmacol 100:886–888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pietra C, Poggesi E, Angelico P, Guarneri L, Testa R (1990) Effects of some antidepressants on the volume-induced reflex contractions of the rat urinary bladder: lack of correlation with muscarinic receptors activity. Pharmacol Res 22:421–432

    Google Scholar 

  • Santicioli P, Maggi CA, Meli A (1984) GABAB receptor mediated inhibition of field stimulation-induced contractions of rabbit bladder muscle in vitro. J Pharm Pharmacol 36:378–381

    Article  CAS  PubMed  Google Scholar 

  • Teramoto N, Creed KE, Brading AF (1997) Activity of glibenclamide-sensitive K+ channels under unstimulated conditions in smooth muscle cells of pig proximal urethra. Naunyn-Schmiedeberg’s Arch Pharmacol 356:418–424

    Article  CAS  Google Scholar 

  • Thornbury KD, Hollywood MA, McHale NG (1992) Mediation of nitric oxide of neurogenic relaxation of the urinary bladder neck muscle in sheep. J Physiol 451:133–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ueda S, Satakee N, Shibata S (1984) α1- and α2-adrenoreceptors in the smooth muscle of isolated rabbit urinary bladder and urethra. Eur J Pharmacol 103:249–254

    Article  CAS  PubMed  Google Scholar 

  • Ukai M, Yuxama H, Noguchi Y, Someya A, Okutsu H, Watanabe M, Yoshino T, Ohtake A, Suzuki M, Sato S, Sasamata M (2006) Participation of endogenous endothelin and ETA receptor in premicturation contractions in rats with bladder outlet obstruction. Naunyn-Schmiedeberg’s Arch Pharmacol 373:197–203

    Article  CAS  Google Scholar 

  • Von Heyden B, Jordan U, Schmitz W, Hertle L (1997) Urethral relaxation after electrostimulation in the guinea pig is independent of nitric oxide. J Urol 157:1509–1513

    Article  Google Scholar 

  • Weetman DF (1972) The guinea-pig isolated, innervated bladder preparation: the effect of some autonomic drugs. Arch Int Pharmacodyn 196:383–392

    CAS  PubMed  Google Scholar 

  • Wuest M, Kaden S, Hakenberg OW, Wirth MP, Ravens U (2005) Effect of rilmakalim on detrusor contraction in the presence and absence of urothelium. Naunyn-Schmiedeberg’s Arch Pharmacol 372:203–212

    Article  CAS  Google Scholar 

Effects on Isolated Urethra

  • Andersson KE, Wein AJ (2004) Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 56:581–631

    Article  CAS  PubMed  Google Scholar 

  • Brading AF (1999) The physiology of the mammalian urinary outflow tract. Exper Physiol 84:215–221

    Article  CAS  Google Scholar 

  • Jankowski RJ, Prantil RL, Fraser MO, Chancellor MB, de Groat WC, Huard J, Vorp DA (2004) Development of an experimental system for the study of urethral biomechanical function. Am J Physiol 286:F225–F232

    CAS  Google Scholar 

  • Michel MC, Okutsu H, Noguchi Y, Suzuki M, Ohtake A, Yuyma H, Yanai-Inamura H, Ukai M, Watanabe M, Someya A, Sasamata M (2006) In vivo studies on the effects of α1-adrenoceptor antagonists on pupil diameter and urethral tone in rabbits. Naunyn-Schmiedeberg’s Arch Pharmacol 372:346–353

    Article  CAS  Google Scholar 

  • Triguero D, González M, Garcia-Pascual A, Costa G (2003) Atypical relaxation of scorpion venom in the lamb urethral smooth muscle involves both NO-dependent and -independent responses. Naunyn-Schmiedeberg‘s Arch Pharmacol 368:151–159

    Google Scholar 

  • Walters RD, McMurray G, Brading AF (2006) Pudendal nerve stimulation of isolated guinea-pig urethra. BJU Int 98:1302–1306

    Article  PubMed  Google Scholar 

Effects on External Urethral Sphincter

  • Hulsebosh CE, Goggeshall RE (1982) An analysis of the axon population in the nerves to the pelvic viscera in the rat. J Comp Neurol 211:1–10

    Article  Google Scholar 

  • Kuro M (1965) Nervous control of micturition. Physiol Rev 45:425–494

    Google Scholar 

  • Morita T, Iizuka H, Iwata T, Kondo S (2000) Function and distribution of β3-adrenoceptors in rat, rabbit and human urinary bladder and external urethral sphincter. J Smooth Muscle Res 36:21–32

    Article  CAS  PubMed  Google Scholar 

  • Parlani M, Manzini S, Argentino-Storino A, Conte B (1992) The rat external urethral sphincter. An in vitro model to evaluate the activity of drugs on the smooth and striated components of the urinary bladder outlet. J Pharmacol Toxicol Methods 28:85–90

    Article  CAS  PubMed  Google Scholar 

  • Purinton PT, Fletcher TF, Bradley WE (1973) Gross and light microscopy features of the pelvic plexus in the rat. Anat Rec 175:697–706

    Article  CAS  PubMed  Google Scholar 

  • Somma V, Conte B, Lopez G, Ml A (1989) A method for complete removal of pelvic ganglia in female rats. J Pharmacol Methods 22:243–247

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Yamamoto TY (1979) Autonomic innervation of the muscle in the wall of the bladder and proximal urethra of male rats. J Anatomy 128:873–886

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Emeigh Hart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hart, S.E. (2015). Drug Influence on Lower Urinary Tract. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics