Skip to main content

Advertisement

Log in

A Knowledge-Anchored Integrative Image Search and Retrieval System

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Clinical data that may be used in a secondary capacity to support research activities are regularly stored in three significantly different formats: (1) structured, codified data elements; (2) semi-structured or unstructured narrative text; and (3) multi-modal images. In this manuscript, we will describe the design of a computational system that is intended to support the ontology-anchored query and integration of such data types from multiple source systems. Additional features of the described system include (1) the use of Grid services-based electronic data interchange models to enable the use of our system in multi-site settings and (2) the use of a software framework intended to address both potential security and patient confidentiality concerns that arise when transmitting or otherwise manipulating potentially privileged personal health information. We will frame our discussion within the specific experimental context of the concept-oriented query and integration of correlated structured data, narrative text, and images for cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  1. Cimino JJ: From data to knowledge through concept-oriented terminologies: experience with the Medical Entities Dictionary. J Am Med Inform Assoc 7(3):288–297, 2000

    PubMed  CAS  Google Scholar 

  2. Sujansky W: Heterogeneous database integration in biomedicine. J Biomed Inform 34(4):285–298, 2001

    Article  PubMed  CAS  Google Scholar 

  3. Kamal J, et al: Information warehouse as a tool to analyze computerized physician order entry order set utilization: opportunities for improvement. AMIA Annu Symp Proc 2003:336–340, 2003

    Google Scholar 

  4. Prather JC, et al: Medical data mining: knowledge discovery in a clinical data warehouse. Proc AMIA Annu Fall Symp 1997:101–105, 1997

    Google Scholar 

  5. Brown M, et al: CAD in clinical trials: current role and architectural requirements. Comput Med Imaging Graph 31(4–5):332–337, 2007

    Article  PubMed  Google Scholar 

  6. Kamauu AW, et al: Informatics in radiology (infoRAD): vendor-neutral case input into a server-based digital teaching file system. Radiographics 26(6):1877–1885, 2006

    Article  PubMed  Google Scholar 

  7. NCIA: Reference Image Database to Evaluate Response (RIDER). Available at http://ncia.nci.nih.gov/ncia/collections. Cited 2007

  8. Sigal R: PACS as an e-academic tool International Congress series 2005, 1281, CARS 2005: Computer Assisted Radiology and Surgery, pp. 900–904

  9. Boochever SS: HIS/RIS/PACS integration: getting to the gold standard. Radiol Manage 26:16–24, 2004

    PubMed  Google Scholar 

  10. Gruber TR: Toward principles for the design of ontologies used for knowledge sharing. In: Guarino N, Poli R Eds. Formal Ontology in Conceptual Analysis and Knowledge RepresentationNorwell: Kluwer, 1993

    Google Scholar 

  11. Joseph P, Bruce GB: Ontology-guided knowledge discovery in databases. In: Proceedings of the international conference on knowledge capture. Victoria, British Columbia, Canada: ACM Press, 2001

  12. Smith B, Kumar A: On controlled vocabularies in bioinformatics: a case study in the gene ontology. Biosilico: Drug Discovery Today 2(1):246–252, 2004

    Article  CAS  Google Scholar 

  13. Gurcan MN, et al: Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med Phys 29(11):2552–2558, 2002

    Article  PubMed  Google Scholar 

  14. Ebbert JO, Dupras DM, Erwin PJ: Searching the medical literature using PubMed: a tutorial. Mayo Clin Proc 78(1):87–91, 2003

    Article  PubMed  Google Scholar 

  15. Olson GM, et al: Collaboratories to support distributed science: the example of international HIV/AIDS research. In: Proceedings of SAICSIT, South Africa. Victoria, British Columbia, Canada: ACM Press, 2002

  16. Butler D: Data, data, everywhere. Nature 414(6866):840–841, 2001

    Article  PubMed  CAS  Google Scholar 

  17. Marks RG, Conlon M, Ruberg SJ: Paradigm shifts in clinical trials enabled by information technology. Stat Med 20(17–18):2683–2696, 2001

    Article  PubMed  CAS  Google Scholar 

  18. Payne PR, Greaves AW, Kipps TJ: CRC clinical trials management system (CTMS): an integrated information management solution for collaborative clinical research. AMIA Annu Symp Proc 2003:967, 2003

    Google Scholar 

  19. Kuchenbecker J, et al: Use of internet technologies for data acquisition in large clinical trials. Telemed J E Health 7(1):73–76, 2001

    Article  PubMed  CAS  Google Scholar 

  20. Marks L, Power E: Using technology to address recruitment issues in the clinical trial process. Trends Biotechnol 20(3):105–109, 2002

    Article  PubMed  CAS  Google Scholar 

  21. Bates DW, et al: A proposal for electronic medical records in U.S. primary care. J Am Med Inform Assoc 10(1):1–10, 2003

    Article  PubMed  Google Scholar 

  22. Sung NS, et al: Central challenges facing the national clinical research enterprise. JAMA 289(10):1278–1287, 2003

    Article  PubMed  Google Scholar 

  23. Bates DW, et al: Effect of computerized physician order entry and a team intervention on prevention of serious medication errors. JAMA 280(15):1311–1316, 1998

    Article  PubMed  CAS  Google Scholar 

  24. Huang H, et al: Picture archiving and communication systems (PACS) in medicine, New York: Springer, 1991

    Google Scholar 

  25. Duerinckx AJ, Pisa EJ: Filmless picture archiving and communication system (PACS) in diagnostic radiology. Proc SPIE 318:9–18, 1982

    Google Scholar 

  26. Gurcan MN, et al: GridImage: a novel use of grid computing to support interactive human and computer-assisted detection decision support. J Digit Imaging 20:160–171, 2007

    Article  PubMed  Google Scholar 

  27. Craver JM, Gold RS: Research collaboratories: their potential for health behavior researchers. Am J Health Behav 26(6):504–509, 2002

    PubMed  Google Scholar 

  28. Kukafka R, et al: Grounding a new information technology implementation framework in behavioral science: a systematic analysis of the literature on IT use. J Biomed Inform 36(3):218–227, 2003

    Article  PubMed  Google Scholar 

  29. Johnson MS, Gonzales MN, Bizila S: Responsible conduct of radiology research part V. The health insurance portability and accountability act and research. Radiology 237(3):757–764, 2005

    Article  PubMed  Google Scholar 

  30. Liu BJ, Zhou Z, Huang HK: A HIPAA-compliant architecture for securing clinical images. J Digit Imaging 19(2):172–180, 2006

    Article  PubMed  Google Scholar 

  31. Amendolia SR, et al: MammoGrid: a service oriented architecture based medical grid application. In: 3rd International Conference on Grid and Cooperative Computing, Wuhan, China, 2004

  32. Blanquer I, et al: A Middleware grid for storing, retrieving and processing DICOM medical images. In: Workshop on Distributed Databases and Processing in Medical Image Computing (DIDAMIC), Rennes, France, 2004

  33. Espert IB, Garcaa VH, Quilis JD: An OGSA middleware for managing medical images using ontologies. J Clin Monit Comput 19(4–5):295–305, 2005

    Article  PubMed  Google Scholar 

  34. Montagnat J, et al: Medical image content-based queries using the grid. In: HealthGrid’03, France, Lyon, 2003

  35. Power D, et al: A relational approach to the capture of DICOM files for Grid-enabled medical imaging databases. In: ACM symposium on applied computing, Cyprus, Nicosia, 2004, pp 272–279

  36. Foster I, Kesselman C: The Grid 2: blueprint for a new computing infrastructure, 2nd edition. New York: Morgan Kaufman, 2003, p. 748

    Google Scholar 

  37. Payne PR, et al: Conceptual knowledge acquisition in biomedicine: a methodological review. J Biomed Inform 40:582–602, 2007

    Article  PubMed  Google Scholar 

  38. NLM: Unified Medical Language System. Available at http://www.nlm.nih.gov/research/umls/meta2.html. Cited 2007

  39. Bodenreider O: Using UMLS semantics for classification purposes. Proc AMIA Symp 2000:86–90, 2000

    Google Scholar 

  40. Campbell KE, et al: Representing thoughts, words, and things in the UMLS. J Am Med Inform Assoc 5(5):421–431, 1998

    PubMed  CAS  Google Scholar 

  41. Thomas BJ, et al: Automated computer-assisted categorization of radiology reports. Am J Roentgenol 184(2):687–690, 2005

    Google Scholar 

  42. Tsui F-C, et al: Value of ICD-9-coded chief complaints for detection of epidemics. J Am Med Inform Assoc 9:S41–S47, 2002

    Article  Google Scholar 

  43. Friedman C, et al: Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc 11(5):392–402, 2004

    Article  PubMed  Google Scholar 

  44. Srinivasan S, et al: Finding UMLS Metathesaurus concepts in MEDLINE. In: American Medical Informatics Association Annual Symposium, 2002, pp 727–731

  45. Taira RK, Soderland SG, Jakobovits RM: Automatic structuring of radiology free-text reports. Radiographics 21:237–245, 2001

    PubMed  CAS  Google Scholar 

  46. Zou Q, et al: IndexFinder: a method of extracting key concepts from clinical texts for indexing. In: American Medical Informatics Association Annual Symposium, 2003, pp 763–767

  47. Alonso O, et al: Oracle text white paper. Available at http://www.oracle.com/technology/products/text/index.html. Cited 2006

  48. International Business Machines Corporation: DB2 text extender. Available at ftp://ftp.software.ibm.com/software/data/db2/extenders/text/db2tewkspecsheet.pdf. Cited 2002

  49. Microsoft Corporation: SQL Server 2000 full-text search deployment white paper. Available at http://www.support.microsoft.com/kb/323739. Cited 2004

  50. Ferrucci D, Lally A: Building an example application with the unstructured information management architecture. IBM Syst J 43(3):455–475, 2004

    Article  Google Scholar 

  51. Baecker R, Small I, Mander R: Bringing icons to life. Proceedings of the SIGCHI conference on human factors in computing systems: reaching through technology. New Orleans, Louisiana, USA: ACM Press, 1991, pp 1–6

  52. NEMA: Digital imaging and communications in medicine. Available at http://www.medical.nema.org/. Cited 2007

  53. Armato III, SG, et al: Lung image database consortium: developing a resource for the medical imaging research community. Radiology 232:739–748, 2004

    Article  PubMed  Google Scholar 

  54. Sigal R: PACS as an e-academic tool. In CARS 2005: computer assisted radiology and surgery. 2005

  55. Toms AP, et al: Building an anonymized catalogued radiology museum in PACS: a feasibility study. Br J Radiol 79:661–671, 2006

    Article  Google Scholar 

  56. Cohen S, Gilboa F, Uri S: PACS and electronic health records, San Diego, CA: SPIE, 2002

    Google Scholar 

  57. Lehmann T, Wein B, Greenspan H: Integration of content-based image retrieval to picture archiving and communication systems. In: Medical Informatics Europe Conference, 2003

  58. Traina A, Rosa NA, Traina C. Integrating images to patient electronic medical records through content-based retrieval techniques. In: 16th IEEE Symposium on Computer-Based Medical Systems, 2003

  59. Leoni L, et al: A virtual data grid architecture for medical data using SRB. In: EuroPACS-MIR 2004, Trieste, Italy, 2004

  60. Erdal S, et al: Flexible patient information search and retrieval framework: pilot implementation. In: Proceedings of the SPIE Medical Imaging, San Diego, CA, 2007

  61. Erdal S, et al: Information warehouse application of caGrid: a prototype implementation. In: caBIG 2007 Annual Meeting, Washington, DC, 2007

  62. Erdal S, et al: Integrating a PACS system to grid: a de-identification and integration framework. In: Annual Meeting of the Society for Imaging Informatics in Medicine (SIIM) 2007, Providence, RI, 2007

  63. Lindberg C: The unified medical language system (UMLS) of the national library of medicine. J Am Med Rec Assoc 61(5):40–42, 1990

    PubMed  CAS  Google Scholar 

  64. Lindberg DA, Humphreys BL, McCray AT: The unified medical language system. Methods Inf Med 32(4):281–291, 1993

    PubMed  CAS  Google Scholar 

  65. Cancer Biomedical Informatics Grid (caBIGä). Available ttps://cabig.nci.nih.gov/workspaces/Architecture/caGrid/, https://cabig.nci.nih.gov/workspaces/Architecture/caGrid/. Cited 2006

  66. Eckerson WW: Three tier client/server architecture: achieving scalability, performance, and efficiency in client server applications. Open Inf Syst 10:1–12, 1995

    Google Scholar 

  67. Gallaugher J, Ramanathan S: Choosing a client/server architecture. A comparison of two-tier and three-tier systems. Inf Syst Manage Mag 13(2):7–13

  68. Clunie DA: DICOM structured reporting, Bangor, Pennsylvania: PixelMed, 2000

    Google Scholar 

  69. Payne PR, et al: Breaking the translational barriers: the value of integrating biomedical informatics and translational research. J Investig Med 53(4):192–200, 2005

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Jason Buskirk, Felix Liu, Scott Silvey, Tremayne Smith, Ty Tolley and Herb Smaltz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selnur Erdal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdal, S., Catalyurek, U.V., Payne, P.R.O. et al. A Knowledge-Anchored Integrative Image Search and Retrieval System. J Digit Imaging 22, 166–182 (2009). https://doi.org/10.1007/s10278-007-9086-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-007-9086-8

Key words

Navigation