Skip to main content
Log in

Molecular phylogeny and evolution of subsection Magnicellulatae (Erysiphaceae: Podosphaera) with special reference to host plants

  • Full Paper
  • Published:
Mycoscience

Abstract

The subsection Magnicellulatae of the genus Podosphaera section Sphaerotheca belongs to the tribe Cystotheceae of the Erysiphaceae, which has the characteristic of producing catenate conidia with distinct fibrosin bodies. In this study, we newly determined the nucleotide sequences of the D1/D2 domains of the 28S rDNA region and the sequences of the rDNA internal transcribed spacer (ITS) region to investigate the relationships between the phylogeny of this fungal group and their host plants. The results indicated that the 28S rDNA region is too conservative for phylogenetic analysis of this fungal group. The phylogenetic analysis using 95 ITS sequences demonstrated that two or more Magnicellulatae taxa often infect the same plant genus or species. Although there is a close relationship between Magnicellulatae and asteraceous hosts, this association seems to be not as strict as that between Golovinomyces and the Asteraceae. The difference between the two fungal groups may be explained by their different evolutionary timing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amano K (1986) Host range and geographical distribution of the powdery mildew fungi. Japan Scientific Societies, Tokyo

    Google Scholar 

  • Braun U (1987) A monograph of the Erysiphales (powdery mildews). Beih Nova Hedwigia 89:1–700

    Google Scholar 

  • Braun U, Takamatsu S (2000) Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaerotheca (Cystotheceae) inferred from rDNA ITS sequences—some taxonomic consequences. Schlechtendalia 4:1–33

    Google Scholar 

  • Braun U, Shishkoff N, Takamatsu S (2001) Phylogeny of Podosphaera sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct. s. lat.) inferred from rDNA ITS sequences—a taxonomic interpretation. Schlechtendalia 7:45–52

    Google Scholar 

  • Braun U, Cook RTA, Inman AJ, Shin HD (2002) The taxonomy of the powdery mildew fungi. In: Bélanger R, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS, St. Paul, pp 13–55

    Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Havrylenko M (1993) Descriptions of new taxa of Erysiphales from Argentina. Mycotaxon 46:257–267

    Google Scholar 

  • Hirata T, Takamatsu S (1996) Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience 37:283–288

    Article  Google Scholar 

  • Hirata T, Cunnington JH, Paksiri U, Limkaisang S, Shishkoff N, Grigaliunaite B, Sato Y, Takamatsu S (2000) Evolutionary analysis of subsection Magnicellulatae of Podosphaera section Sphaerotheca (Erysiphales) based on the rDNA ITS sequences with special reference to host plants. Can J Bot 78:1521–1530

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Tsuge T (1995) Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA. Curr Genet 28:491–498

    Article  CAS  PubMed  Google Scholar 

  • Liberato JR, Barreto RW, Niinomi S, Takamatsu S (2006) Queirozia turbinata (Phyllactinieae, Erysiphaceae): a powdery mildew with a dematiaceous anamorph. Mycol Res 110:567–574

    Article  CAS  PubMed  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett DS, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Mia˛dlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung G-H, Lu¨cking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim Y-W, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  Google Scholar 

  • Matsuda S, Takamatsu S (2003) Evolution of host–parasite relationships of Golovinomyces (Ascomycete: Erysiphaceae) inferred from nuclear rDNA sequences. Mol Phylogenet Evol 27:314–327

    Article  CAS  PubMed  Google Scholar 

  • Mori Y, Sato Y, Takamatsu S (2000a) Evolutionary analysis of the powdery mildew fungi using nucleotide sequences of the nuclear ribosomal DNA. Mycologia 92:74–93

    Article  CAS  Google Scholar 

  • Mori Y, Sato Y, Takamatsu S (2000b) Molecular phylogeny and radiation time of Erysiphales inferred from the nuclear ribosomal DNA sequences. Mycoscience 41:437–447

    Article  CAS  Google Scholar 

  • Nomura Y (1974) Notes on parasitism of some powdery mildews (in Japanese). J Jap Bot 49:62–64

    Google Scholar 

  • Nomura Y (1997) Taxonomical study of Erysiphaceae of Japan (in Japanese). Yokendo, Tokyo

    Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Evolutionary Biology Centre, Uppsala University: Program distributed by the author

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Saenz GS, Taylor JW, Gargas A (1994) 18S rRNA gene sequences and supraordinal classification of the Erysiphales. Mycologia 86:212–216

    Article  CAS  Google Scholar 

  • Shishkoff N (1999) Using host, mating strategy and ascus type to understand the species complex Sphaerotheca fusca. The First International Powdery Mildew Conference, Avignon, France, August 29–September 2, p 18

  • Swofford DL (2001) PAUP*: phylogenetic analysis using parsimony (* and other methods) 4.0b8. Sinauer, Sunderland

    Google Scholar 

  • Takamatsu S (2004) Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal DNA sequences. Mycoscience 45:147–157

    Article  CAS  Google Scholar 

  • Takamatsu S, Kano Y (2001) PCR primers useful for nucleotide sequencing of rDNA of the powdery mildew fungi. Mycoscience 42:135–139

    Article  CAS  Google Scholar 

  • Takamatsu S, Matsuda S (2004) Estimation of molecular clocks for ITS and 28S rDNA in Erysiphales. Mycoscience 45:340–344

    Article  CAS  Google Scholar 

  • Takamatsu S, Hirata T, Sato Y (2000) A parasitic transition from trees to herbs occurred at least twice in tribe Cystotheceae (Erysiphaceae): evidence from nuclear ribosomal DNA. Mycol Res 104:1304–1311

    Article  CAS  Google Scholar 

  • Takamatsu S, Braun U, Limkaisang S (2005a) Phylogenetic relationships and generic affinity of Uncinula septata inferred from nuclear rDNA sequences. Mycoscience 46:9–16

    Article  CAS  Google Scholar 

  • Takamatsu S, Niinomi S, Cabrera de Álvarez MG, Álvarez RE, Havrylenko M, Braun U (2005b) Caespitotheca gen. nov., an ancestral genus in the Erysiphales. Mycol Res 109:903–911

    Article  PubMed  Google Scholar 

  • Takamatsu S, Matsuda S, Niinomi S, Havrylenko M (2006) Molecular phylogeny supports a northern hemisphere origin of Golovinomyces (Ascomycota: Erysiphales). Mycol Res 110:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu S, Heluta V, Havrylenko M, Divarangkoon R (2009) Four powdery mildew species with catenate conidia infect Galium: molecular and morphological evidence. Mycol Res 113:117–129

    Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW, Hibbett DS (2006) Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. Mol Phylogenet Evol 41:295–312

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Johnston PR, Takamatsu S, Spatafora JW, Hibbett DS (2007) [‘2006’] Phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia 98:1066–1076

    Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wolcan SM (2004) Podosphaera balsaminae on Impatiens balsamina and Inpatiens × hawker. Austral Plant Pathol 33:133–134

    Article  Google Scholar 

  • Zheng RY, Yu YN (eds) (1987) Flora Fungorum Sinicorum, vol. 1. Erysiphales. Science, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Takamatsu.

About this article

Cite this article

Ito, M., Takamatsu, S. Molecular phylogeny and evolution of subsection Magnicellulatae (Erysiphaceae: Podosphaera) with special reference to host plants. Mycoscience 51, 34–43 (2010). https://doi.org/10.1007/s10267-009-0005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-009-0005-3

Keywords

Navigation