Skip to main content
Log in

Molecular phylogeny and radiation time of Erysiphales inferred from the nuclear ribosomal DNA sequences

  • Original Papers
  • Published:
Mycoscience

Abstract

Phylogenetic relationships of Erysiphales within Ascomycota were inferred from the newly determined sequences of the 18S rDNA and partial sequences of the 28S rDNA including the D1 and D2 regions of 10 Erysiphales taxa. Phylogenetic analyses revealed that the Erysiphales form a distinct clade among ascomycetous fungi suggesting that the Erysiphales diverged from a single ancestral taxon. The Myxotrichaceae of the Onygenales was distantly related to the other onygenalean families and was the sister group to the Erysiphales calde, with which it combined to form a clade. The Erysiphales/Myxotrichaceae clade was also closely related to some discomycetous fungi (Leotiales, Cyttariales and Thelebolaceae) including taxa that form cleistothecial ascomata. The present molecular analyses as well as previously reported morphological observations suggest the possible existence of a novel evolutionary pathway from cleistothecial discomycetous fungi to Erysiphales and Myxotrichaceae. However, since most of these fungi, except for the Erysiphales, are saprophytic on dung and/or plant materials, the questions of how and why an obligate biotroph like the Erysiphales radiated from the saprophytic fungi remain to be addressed. We also estimated the radiation time of the Erysiphales using the 18S rDNA sequences and the two molecular clockes that have been previously reported. The calculation showed that the Erysiphales split from the Myxotrichaceae 190–127 myr ago. Since the radiation time of the Erysiphales does not exceed 230 myr ago, even when allowance is made for the uncertainty of the molecular clocks, it is possible to consider that the Erysiphales evolved after the radiation of angiosperms. The results of our calculation also showed that the first radiation within the Erysiphales (138–92 myr ago) coincided with the date of a major diversification of angiosperms (130–90 myr ago). These results may support our early assumption that the radiation of the Erysiphales coincided with the evolution of angiosperm plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Adachi, J. and Hasegawa, M. 1996. MOLPHY: programs for molecular phylogenetics, ver. 2.3. Institute of Statistical Mathematics, Tokyo.

    Google Scholar 

  • Ainsworth, G. C., James, P. W. and Hawksworth, D. L. 1971. Ainsworth and Bisby’s dictionaly of the fungi including the lichens. 6th ed. CAB International, Kew.

    Google Scholar 

  • Alexopoulos, C. J. and Mims, C. W. 1979. Introductory mycology, 3rd ed. John Wiley & Sons, New York.

    Google Scholar 

  • Amano (Hirata), K. 1986. Host range and geographical distribution of the powdery mildew fungi. Japan Scientific Societies Press. Tokyo.

    Google Scholar 

  • Berbee, M. L. and Taylor, J. W. 1993. Dating the evolutionary radiation of the true fungi. Can. J. Bot.71: 1114–1127.

    Google Scholar 

  • Braun, U. 1987. A monograph of the Erysiphales (powdery mildews). Beih. Nova Hedwig.89: 1–700.

    Google Scholar 

  • Cain, R. F. 1972. Evolution of the fungi. Mycologia64: 1–14.

    Google Scholar 

  • Cooke, J. C. and Barr, M. E. 1964. The taxonomic position of the genusThelebolus. Mycologia56: 763–769.

    Google Scholar 

  • Crane, P. R., Friis, E. M. and Pedersen, K. R. 1995. The origin and early diversification of angiosperms. Nature374: 27–33.

    Article  CAS  Google Scholar 

  • Crumlish, B. and Curran, P. 1994.Amylocarpus encephaloides Currey, a marine fungus new to Ireland. Mycologist8: 83–84.

    Article  Google Scholar 

  • Currah, R. S. 1985. Taxonomy of the Onygenales: Arthrodermatacaae, Gymnoascaceae, Myxotrichacaea and Onygenaceae. Mycotaxon24: 1–216.

    Google Scholar 

  • Currah, R. S. 1995. Ecological data and the systematics of the Onygenales. 3rd Intern. Symp. Mycol. Soc. Japan, Chiba, Japan, Nov. 30–Dec. 1, pp. 68–72.

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39: 783–791.

    Article  Google Scholar 

  • Felsenstein, J. 1989. PHYLIP-phylogeny inference package (version 3.2). Cladistics5: 164–166.

    Google Scholar 

  • Hawksworth, D. L., Kirk, P. M., Sutton, B. C. and Pegler, D. N. 1995. Ainsworth & Bisby’s dictionary of the fungi. 8th ed. CAB Interntiona, Kew.

    Google Scholar 

  • Higgins, D. G., Bleaby, A. J. and Fuchs, R. 1992. CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci.8: 189–191.

    PubMed  CAS  Google Scholar 

  • Hirata, T. and Takamatsu, S. 1996. Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience37: 265–270.

    Article  Google Scholar 

  • Hiura, U. 1978. Genetic basis of formae speciales inErysiphe graminis DC. In: The powdery mildews, (ed. by Spencer, D. M.), pp. 101–128. Academic Press, New York.

    Google Scholar 

  • Kimbrough, J. W. 1981. Cytology, Ultrastructure, and taxonomy ofThelebolus (Ascomycetes). Mycologia73: 1–27.

    Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kohlmeyer, J. and Kohlmeyer, E. 1979. Marine mycology: The higher fungi, Academic Press, New York.

    Google Scholar 

  • Landvik, S., Egger, K. N. and Schumacher, T. 1997. Towards a subordinal classification of the Pezizales (Ascomycota): phylogenetic analyses of SSU rDNA sequences. Nord. J. Bot.17: 403–418.

    CAS  Google Scholar 

  • Landvik, S., Kristiansen, R. and Schumacher, T. 1998. Phylogenetic and structural studies in the Thelebolaceae (Ascomycota). Mycoscience39: 49–56.

    Article  Google Scholar 

  • Landvik, S., Shailer, N. F. J. and Eriksson, O. E. 1996. SSU rDNA sequence support for a close relationship between the Elaphomycetales and the Eurotiales and Onygenales. Mycoscience37: 237–241.

    Article  CAS  Google Scholar 

  • Maddison, W. P. and Maddison, D. R. 1992. MacClade: Analysis of Phylogeny and Character Evolution. Sunderland, MA: Sinauer Associates, Inc.

    Google Scholar 

  • Momol, E. A., Kimbrough, J. W. and Eriksson, O. E. 1996. Phylogenetic relationships ofThelebolus indicated by 18S rDNA sequence analyses. Syst. Ascom.14: 91–100.

    Google Scholar 

  • Mori, Y., Sato, Y. and Takamatsu, S. 2000. Evolutionary analysis of the powdery mildew fungi (Erysiphales) using nucleotide sequences of the nuclear ribosomal DNA. Mycologia92: 74–93.

    CAS  Google Scholar 

  • Nomura, Y. 1997. Taxonomical study of Erysiphaceae of Japan. Yokendo, Tokyo. (In Japanese.)

    Google Scholar 

  • Pirozynski, K. A. 1976. Fossil fungi. Annu. Rev. Phytopathol.14: 237–246.

    Article  Google Scholar 

  • Saenz, G. S. and Taylor, J. W. 1999. Phylogeney of the Erysiphales (powdery mildews) inferred from internal transcribed spacer (ITS) ribosomal DNA sequences. Can. J. Bot.77: 150–169.

    Article  CAS  Google Scholar 

  • Saenz, G. S., Taylor, J. W. and Gargas, A. 1994. 18S rRNA gene sequences and supraordinal classification of the Erysiphales. Mycologia86: 212–216.

    CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4: 406–425.

    PubMed  CAS  Google Scholar 

  • Samuelson, D. A. and Kimbrough, J. W. 1978. Asci of the Pezizales IV: The apical apparatus ofThelebolus. Bot. Gaz.139: 346–361.

    Article  Google Scholar 

  • Savard, L., Li, P., Strauss, S. H., Chase, M. W., Michaud, M. and Bousquet, J. 1994. Chloroplast and nuclear gene sequences indicate Late Pennsylvanian time for the last common ancestor of extant seed plants. Proc. Nat. Acad. Sci. USA91: 5163–5167.

    Article  PubMed  CAS  Google Scholar 

  • Simon, L., Bousquet, J., Lévesque, R. C. and Lalonde, M. 1993. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature363: 67–69.

    Article  Google Scholar 

  • Sugiyama, M., Ohara, A. and Mikawa, T. 1999. Molecular phylogeny of onygenalean fungi based on small subunit ribosomal DNA (SSU rDNA) sequences. Mycoscience40: 251–258.

    Article  CAS  Google Scholar 

  • Swofford, D. L. 1993. Phylogenetic Analysis Using Parsimony (PAUP Version 3.1.1.). Illnois Natural History Survey: Champaign, Illinois.

    Google Scholar 

  • Tajima, F. 1993. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics135: 599–607.

    PubMed  CAS  Google Scholar 

  • Takamatsu, S., Hirata, T. and Sato, Y. 1998. Phylogenetic analysis and predicted secondary structures of the rDNA internal transcribed spacers of the powdery mildew fungi (Erysiphaceae). Mycoscience39: 441–453.

    CAS  Google Scholar 

  • Tiffney, B. H. and Barghoorn, E. S. 1974. The fossil record of the fungi. Occas. Pap. Farlow Herb. Cryptogam. Bot. Harv.7: 1–42.

    Google Scholar 

  • Walsh, P. S., Metzger, D. A. and Higuchi, R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Bio Techniques10: 506–513.

    CAS  Google Scholar 

  • Webster, J. 1980. Introduction of fungi. 2nd ed. Cambridge University Press. New York.

    Google Scholar 

  • White, T. J., Bruns, T. D., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: PCR protocols: a guide to methods and applications, (ed. by Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J.), pp. 315–322. Academic Press, San Diego.

    Google Scholar 

  • Yarwood, C. E. 1957. Powdery mildews. Bot. Rev.13: 235–301.

    Article  Google Scholar 

  • Yarwood, C. E. 1973. Pyrenomycetes: Erysiphales. In: The fungi: an advanced treatise. Vol. IVA, (ed. by Ainsworth, G. C., Sparrow, F. K. and Sussman, A. S.), pp. 71–86. Academic Press, New York.

    Google Scholar 

  • Yarwood, C. E. 1978. History and taxonomy of the powdery mildews. In: The powdery mildews, (ed. by Spencer, D. M.), pp. 1–37. Academic Press, New York.

    Google Scholar 

  • Zukal, H. 1886. Mykologische Untersuchungen. Demkschriften der Akademie der Wissenschaften (Wien), Math.-Naturw.51: 21–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Takamatsu.

Additional information

Contribution No. 152 from the Laboratory of Plant Pathology, Mie University

About this article

Cite this article

Mori, Y., Sato, Y. & Takamatsu, S. Molecular phylogeny and radiation time of Erysiphales inferred from the nuclear ribosomal DNA sequences. Mycoscience 41, 437–447 (2000). https://doi.org/10.1007/BF02461662

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461662

Key Words

Navigation