Skip to main content
Log in

Bacterial adhesion to composite resins produced by additive and subtractive manufacturing

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the surface roughness and contact angle of composite resins produced by CAD/CAM milling and three-dimensional (3D) printing for permanent restorations as well as the adhesion of S. mutans and S. sanguinis bacteria to these composites. Three CAD/CAM milling composite resins (Vita Enamic-VE, Cerasmart-CE, Lava Ultimate-LU) and three 3D printing resins (Varseo Smile Crown plus-VSC, Saremco print Crowntech-SPC, Formlabs 3B Permanent crown-FLP) were selected. Twenty samples were prepared for each group. Using a contact profilometer, the surface roughness was determined, and an optical goniometer was used to quantify the contact angle. To evaluate the bacterial adhesion, composite specimens were immersed in mucin containing artificial saliva. All samples were incubated for 24 h at 37°C in 5% CO2. CFUs were determined by counting colonies after the incubation period. Surface roughness values of test samples were the highest in the Group VSC [0.46 (0.14) µm], whereas the lowest values were found in the Group LU [0.23 (0.05) µm]. There was no statistically significant difference between the groups in contact angle values (p > 0.05). The S. mutans adhesion extent on the Group SPC was statistically higher compared to all other materials with p < 0.05. For S. sanguinis, the lowest bacterial adhesion value was recorded in Group CE (3.00 × 104 CFU/ml) and statistically significant differences were found with Group VE and VSC (p < 0.05). Different digital manufacturing techniques and material compositions can affect the surface roughnesses of composite resins. All composite resin samples have hydrophobic characteristics. Microbial adhesion of the tested composite resins may be varied depending on the bacterial species. S. mutans showed much more adhesion to these materials than S. sanguinis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data of the study can be available by requesting from the corresponding author.

References

  1. Miyazaki T, et al. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28(1):44–56.

    Article  PubMed  Google Scholar 

  2. Methani MM, Revilla-León M, Zandinejad A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: a review. J Esthet Restor Dent. 2020;32(2):182–92.

    Article  PubMed  Google Scholar 

  3. Schweiger J, Edelhoff D, Güth J-F. 3D printing in digital prosthetic dentistry: an overview of recent developments in additive manufacturing. J Clin Med. 2021;10(9):2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Emir F, Ayyildiz S. Accuracy evaluation of complete-arch models manufactured by three different 3D printing technologies: a three-dimensional analysis. J Prosthodont Res. 2021;65(3):365–70.

    Article  PubMed  Google Scholar 

  5. Simoneti DM, Pereira-Cenci T, Dos Santos MBF. Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods. J Prosthet Dent. 2022;127(1):168–72.

    Article  CAS  PubMed  Google Scholar 

  6. Sonkaya E and Kürklü ZGB (2022) The effect of different surface treatments on the repair of 3D permanent resin restorations by composite resin different surface treatments and repair of 3D permanent resin. https://doi.org/10.21203/rs.3.rs-1808447/v1

  7. Atria PJ, et al. 3D-printed resins for provisional dental restorations: comparison of mechanical and biological properties. J Esthet Restor Dent. 2022;34(5):804–15.

    Article  PubMed  Google Scholar 

  8. Zimmermann M, et al. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin Oral Invest. 2019;23(6):2777–84.

    Article  Google Scholar 

  9. Grzebieluch W, et al. Printable and machinable dental restorative composites for CAD/CAM application—comparison of mechanical properties, fractographic, texture and fractal dimension analysis. Materials. 2021;14(17):4919.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Sahin Z, Ozer N, Kιlιçarslan M. Mechanical characteristics of composite resins produced by additive and subtractive manufacturing. Eur J Prosthodont Restor Dent. 2023;31(3):278–85.

    CAS  PubMed  Google Scholar 

  11. Borella PS, et al. Physical and mechanical properties of four 3D-printed resins at two different thick layers: an in vitro comparative study. Dent Mat. 2023. https://doi.org/10.1016/j.dental.2023.06.002.

    Article  Google Scholar 

  12. Nam N-E, et al. Effects of heat-treatment methods on cytocompatibility and mechanical properties of dental products 3D-printed using photopolymerized resin. J Prosthodont Res. 2023;67(1):121–31.

    Article  PubMed  Google Scholar 

  13. Jin G, et al. Influence of postwashing process on the elution of residual monomers, degree of conversion, and mechanical properties of a 3D printed crown and bridge materials. Dent Mater. 2022;38(11):1812–25.

    Article  CAS  PubMed  Google Scholar 

  14. Vichi A, et al. Translucency of CAD/CAM and 3D printable composite materials for permanent dental restorations. Polymers. 2023;15(6):1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Espinar C, et al. The influence of printing angle on color and translucency of 3D printed resins for dental restorations. Dent Mater. 2023;39(4):410–7.

    Article  CAS  PubMed  Google Scholar 

  16. Mota EG, et al. The effect of milling and postmilling procedures on the surface roughness of CAD/CAM materials. J Esthet Restor Dent. 2017;29(6):450–8.

    Article  PubMed  Google Scholar 

  17. Costa GD, et al. Effect of additional polishing methods on the physical surface properties of different nanocomposites: SEM and AFM study. Microsc Res Tech. 2018;81(12):1467–73.

    Article  PubMed  Google Scholar 

  18. Oyar P, Ulusoy M, Durkan R. Effects of repeated use of tungsten carbide burs on the surface roughness and contact angles of a CAD-CAM PMMA denture base resin. J Prosthet Dent. 2022;128(6):1358–62.

    Article  CAS  PubMed  Google Scholar 

  19. Bilgili D, et al. Surface properties and bacterial adhesion of bulk-fill composite resins. J Dent. 2020;95: 103317.

    Article  CAS  PubMed  Google Scholar 

  20. He J, et al. Synthesis of methacrylate monomers with antibacterial effects against S. mutans. Molecules. 2011;16(11):9755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bilgili Can D, et al. Evaluation of surface characteristic and bacterial adhesion of low-shrinkage resin composites. Microsc Res Tech. 2021;84(8):1783–93.

    Article  CAS  PubMed  Google Scholar 

  22. Marsh P. Dental plaque as a microbial biofilm. Caries Res. 2004;38(3):204–11.

    Article  CAS  PubMed  Google Scholar 

  23. Steinberg D, Eyal S. Early formation of Streptococcus sobrinus biofilm on various dental restorative materials. J Dent. 2002;30(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  24. Li J, et al. Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol. 2004;97(6):1311–8.

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda M, et al. Effect of surface characteristics on adherence of S. mutans biofilms to indirect resin composites. Dent Mater J. 2007;26(6):915–23.

    Article  PubMed  Google Scholar 

  26. Hotta M, et al. Adherence of Streptococcus sanguinis and Streptococcus mutans to salivacoated S-PRG resin blocks. Dent Mater J. 2014;33(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  27. Kim K, et al. Effect of bisphenol a glycol methacrylate on virulent properties of Streptococcus mutans UA159. Caries Res. 2019;53:84–95.

    Article  CAS  PubMed  Google Scholar 

  28. Özarslan M, et al. Effect of different polishing techniques on surface properties and bacterial adhesion on resin-ceramic CAD/CAM materials. Clin Oral Invest. 2022;26(8):5289–99.

    Article  Google Scholar 

  29. Dobrzynski M, et al. Study of surface structure changes for selected ceramics used in the cad/cam system on the degree of microbial colonization, in vitro tests. BioMed Res Int. 2019. https://doi.org/10.1155/2019/9130806.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ribeiro AKC, et al. Flexural strength, surface roughness, micro-CT analysis, and microbiological adhesion of a 3D-printed temporary crown material. Clin Oral Investig. 2023. https://doi.org/10.1007/s00784-023-04941-3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nozaki K, et al. Suppression effects of dental glass-ceramics with polarization-induced highly dense surface charges against bacterial adhesion. Dent Mater J. 2015;34(5):671–8.

    Article  CAS  PubMed  Google Scholar 

  32. Alharbi N, et al. Quantitative nano-mechanical mapping AFM-based method for elastic modulus and surface roughness measurements of model polymer infiltrated ceramics. Dent Mater. 2022;38(6):935–45.

    Article  CAS  PubMed  Google Scholar 

  33. Porojan L, et al. Surface characterisation of dental resin composites related to conditioning and finishing. Polymers. 2021;13(23):4236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taşın S, Ismatullaev A, Usumez A. Comparison of surface roughness and color stainability of 3-dimensionally printed interim prosthodontic material with conventionally fabricated and CAD-CAM milled materials. J Prosthet Dent. 2022;128(5):1094–101.

    Article  PubMed  Google Scholar 

  35. Aldahian N, et al. Influence of conventional, CAD-CAM, and 3D printing fabrication techniques on the marginal integrity and surface roughness and wear of interim crowns. Appl Sci. 2021;11(19):8964.

    Article  CAS  Google Scholar 

  36. Khanlar LN, et al. Surface roughness and shear bond strength to composite resin of additively manufactured interim restorative material with different printing orientations. J Prosthetic Dent. 2023;129(5):788–95

    Article  Google Scholar 

  37. Graf T, et al. Influence of pre-treatment and artificial aging on the retention of 3D-printed permanent composite crowns. Biomedicines. 2022;10(9):2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kukiattrakoon B, Hengtrakool C, Kedjarune-Leggat U. Effect of acidic agents on surface roughness of dental ceramics. Dent Res J. 2011;8(1):6.

    CAS  Google Scholar 

  39. Bollen CM, et al. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implant Res. 1996;7(3):201–11.

    Article  CAS  Google Scholar 

  40. Kaplan BA, et al. The effect of three polishing systems on the surface roughness of four hybrid composites: a profilometric and scanning electron microscopy study. J Prosthet Dent. 1996;76(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  41. Marghalani HY. Effect of filler particles on surface roughness of experimental composite series. J Appl Oral Sci. 2010;18:59–67.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ling L, Ma Y, Malyala R. A novel CAD/CAM resin composite block with high mechanical properties. Dent Mater. 2021;37(7):1150–5.

    Article  CAS  PubMed  Google Scholar 

  43. Lise DP, et al. Light irradiance through novel CAD–CAM block materials and degree of conversion of composite cements. Dent Mater. 2018;34(2):296–305.

    Article  CAS  PubMed  Google Scholar 

  44. Egbert JS, et al. Fracture strength of ultrathin occlusal veneer restorations made from CAD/CAM composite or hybrid ceramic materials. Oral Science International. 2015;12(2):53–8.

    Article  Google Scholar 

  45. Al-Dwairi ZN, et al. A comparison of the surface properties of CAD/CAM and conventional polymethylmethacrylate (PMMA). J Prosthodont. 2019;28(4):452–7.

    Article  PubMed  Google Scholar 

  46. Liber-Kneć A, Łagan S. Surface testing of dental biomaterials—determination of contact angle and surface free energy. Materials. 2021;14(11):2716.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  47. Alammari MR. The influence of polishing techniques on pre-polymerized CAD\CAM acrylic resin denture bases. Electron Physician. 2017;9(10):5452.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kurt A, et al. Effect of different polishing techniques for composite resin materials on surface properties and bacterial biofilm formation. J Dent. 2019;90: 103199.

    Article  CAS  PubMed  Google Scholar 

  49. Nedeljkovic I, et al. Lack of buffering by composites promotes shift to more cariogenic bacteria. J Dent Res. 2016;95(8):875–81.

    Article  CAS  PubMed  Google Scholar 

  50. Shim JS, et al. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J Prosthet Dent. 2020;124(4):468–75.

    Article  CAS  PubMed  Google Scholar 

  51. Sturz CR, et al. Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness. Dent Mater J. 2015;34(6):796–813.

    Article  CAS  PubMed  Google Scholar 

  52. Kreve S, Dos Reis AC. Effect of surface properties of ceramic materials on bacterial adhesion: a systematic review. J Esthet Restor Dent. 2022;34(3):461–72.

    Article  PubMed  Google Scholar 

  53. Tang H, et al. Effect of surface proteins on staphylococcus epidermidis adhesion and colonization on silicone. Colloids Surf, B. 2006;51(1):16–24.

    Article  CAS  Google Scholar 

  54. Gyo M, et al. Surface response of fluorine polymer-incorporated resin composites to cariogenic biofilm adherence. Appl Environ Microbiol. 2008;74(5):1428–35.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Poole SF, et al. Influence of different ceramic materials and surface treatments on the adhesion of prevotella intermedia. J Mech Behav Biomed Mater. 2020;111: 104010.

    Article  CAS  PubMed  Google Scholar 

  56. Go H, et al. Effect of various polishing burs on surface roughness and bacterial adhesion in pediatric zirconia crowns. Dent Mater J. 2019;38(2):311–6.

    Article  CAS  PubMed  Google Scholar 

  57. Rosentritt M, et al. In vitro adherence of oral streptococci to zirconia core and veneering glass-ceramics. J Biomed Mater Res B Appl Biomater. 2009;91(1):257–63.

    Article  PubMed  Google Scholar 

  58. Meier R, et al. Adhesion of oral streptococci to all-ceramics dental restorative materials in vitro. J Mater Sci - Mater Med. 2008;19:3249–53.

    Article  CAS  PubMed  Google Scholar 

  59. Aykent F, et al. Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J Prosthet Dent. 2010;103(4):221–7.

    Article  CAS  PubMed  Google Scholar 

  60. Hahnel S, et al. Biofilm formation and release of fluoride from dental restorative materials in relation to their surface properties. J Dent. 2017;60:14–24.

    Article  CAS  PubMed  Google Scholar 

  61. Cazzaniga G, et al. In vitro biofilm formation on resin-based composites after different finishing and polishing procedures. J Dent. 2017;67:43–52.

    Article  CAS  PubMed  Google Scholar 

  62. Busscher H, et al. Biofilm formation on dental restorative and implant materials. J Dent Res. 2010;89(7):657–65.

    Article  CAS  PubMed  Google Scholar 

  63. Dutra D, et al. Grinding with diamond burs and hydrothermal aging of a Y-TZP material: effect on the material surface characteristics and bacterial adhesion. Oper Dent. 2017;42(6):669–78.

    Article  PubMed  Google Scholar 

  64. Kawai K, Urano M, Ebisu S. Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans. J Prosthet Dent. 2000;83(6):664–7.

    Article  CAS  PubMed  Google Scholar 

  65. Okada A, et al. Inhibition of biofilm formation using newly developed coating materials with self-cleaning properties. Dent Mater J. 2008;27(4):565–72.

    Article  CAS  PubMed  Google Scholar 

  66. Huang X, et al. Effect of arginine on the growth and biofilm formation of oral bacteria. Arch Oral Biol. 2017;82:256–62.

    Article  CAS  PubMed  Google Scholar 

  67. Ionescu A, et al. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites. J Mater Sci - Mater Med. 2015;26:1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors represent gratitude for for their support in the statistical analysis of the article, Lokman Hekim University Biostatistics Application and Research Unit and Biostatistics Specialist Müge Coşkun and we would like to thank Mr. Mustafa Yeşil for his support as the laboratory technician and Yıldırım Beyazıt University Central Research Laboratory for SEM analysis. The companies whose materials are used in this article are completely independent of the authors’ financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazire Esra Ozer.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer, N.E., Sahin, Z., Yikici, C. et al. Bacterial adhesion to composite resins produced by additive and subtractive manufacturing. Odontology 112, 460–471 (2024). https://doi.org/10.1007/s10266-023-00862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00862-5

Keywords

Navigation