Skip to main content

Advertisement

Log in

Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Indirect CAD/CAM restorations can be fabricated using both subtractive and additive CAD/CAM technology. This study investigated the fracture load of crowns fabricated from three particle-filled composite CAD/CAM materials and one 3D-printed composite material.

Materials and methods

Lava Ultimate, Cerasmart and Brilliant Crios were used as particle-filled composite CAD/CAM material and els-3D Harz as 3D-printed composite material. For each group, crowns with three different material thicknesses (0.5/1.0/1.5 mm) were fabricated. Control group was composed of ceramic-based CAD/CAM materials e.max CAD and Enamic. Totally, n = 180 crowns were fabricated and adhesively seated on SLA fabricated dies. Thermomechanical loading and fracture testing were performed. The data for fracture loading force were statistically analyzed by two-way ANOVA followed with multiple comparisons by post hoc Tukey’s test (α = 0.05).

Results

In contrast to ceramics, all particle-filled composite crowns with 0.5-mm thickness survived fatigue testing. Forces varied statistically significantly. Brilliant Crios showed highest maximum loading force with 1580.4 ± 521.0 N (1.5 mm). Two-way ANOVA indicated that both the material and the thickness affected the fracture load (p < 0.05).

Conclusions

Particle-filled composite resin CAD/CAM materials may have advantageous material characteristics compared to ceramic CAD/CAM materials for minimal restoration thicknesses.

Clinical relevance

Composite-based CAD/CAM materials may offer new possibilities in minimally invasive restorative treatment concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thompson VP, Rekow DE (2004) Dental ceramics and the molar crown testing ground. J Appl Oral Sci 12(spec):26–36

    Article  PubMed  Google Scholar 

  2. Ruse ND, Sadoun MJ (2014) Resin-composite blocks for dental CAD/CAM applications. J Dent Res 93:1232–1234

    Article  PubMed  PubMed Central  Google Scholar 

  3. Spitznagel FA, Horvath SD, Guess PC, Blatz MB (2014) Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent 26:382–393

    Article  PubMed  Google Scholar 

  4. Alharbi A, Ardu S, Bortolotto T, Krejci I (2017) Stain susceptibility of composite and ceramic CAD/CAM blocks versus direct resin composites with different resinous matrices. Odontology 105:162–169

    Article  PubMed  Google Scholar 

  5. Kamonwanon P, Hirose N, Yamaguchi S, Sasaki JI, Kitagawa H, Kitagawa R, Thaweboon S, Srikhirin T, Imazato S (2017) SiO2-nanocomposite film coating of CAD/CAM composite resin blocks improves surface hardness and reduces susceptibility to bacterial adhesion. Dent Mater J 36:88–94

    Article  PubMed  Google Scholar 

  6. Zimmermann M, Mehl A, Reich S (2013) New CAD/CAM materials and blocks for chairside procedures. Int J Comput Dent 16:173–181

    PubMed  Google Scholar 

  7. Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, Grosgogeat B (2018) Mechanical properties and internal fit of 4 CAD-CAM block materials. J Prosthet Dent 119:384–389

    Article  PubMed  Google Scholar 

  8. Zimmerman M, Koller C, Reymus M, Mehl A, Hickel R (2017) Clinical evaluation of indirect particle-filled composite resin CAD/CAM partial crowns after 24 months. J Prosthodont 27:694–699. https://doi.org/10.1111/jopr.12582

    Article  Google Scholar 

  9. Shembish FA, Tong H, Kaizer M, Janal MN, Thompson VP, Opdam NJ, Zhang Y (2016) Fatigue resistance of CAD/CAM resin composite molar crowns. Dent Mater 32:499–509

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schlichting LH, Maia HP, Baratieri LN, Magne P (2011) Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. J Prosthet Dent 105:217–226

    Article  PubMed  Google Scholar 

  11. Magne P, Schlichting LH, Maia HP, Barattieri LN (2010) In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J Prosthet Dent 104:149–157

    Article  PubMed  Google Scholar 

  12. Magne P, Stanley K, Schlichting LH (2012) Modeling of ultrathin occlusal veneers. Dent Mater 28:777–782

    Article  PubMed  Google Scholar 

  13. El-Damanhoury HM, Haj-Ali RN, Platt JA (2015) Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. Oper Dent 40:201–210

    Article  PubMed  Google Scholar 

  14. Krejci I, Reich T, Lutz F, Albertoni M (1990) An in vitro test procedure for evaluating dental restoration systems. 1. A computer-controlled mastication simulator. Schweiz Monatsschr Zahnmed 100:953–960

    PubMed  Google Scholar 

  15. Scherrer SS, de Rijk WG (1992) The effect of crown length on the fracture resistance of posterior porcelain and glass-ceramic crowns. Int J Prosthodont 5:550–557

    PubMed  Google Scholar 

  16. Rosentritt M, Plein T, Kolbeck C, Behr M, Handel G (2000) In vitro fracture force and marginal adaptation of ceramic crowns fixed on natural and artificial teeth. Int J Prosthodont 13:387–391

    PubMed  Google Scholar 

  17. Guess PC, Schultheis S, Wolkewitz M, Zhang Y, Strub JR (2013) Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations. J Prosthet Dent 110:264–273

    Article  PubMed  PubMed Central  Google Scholar 

  18. May LG, Kelly JR, Bottino MA, Hill T (2012) Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: multi-physics FEA modeling and monotonic testing. Dent Mater 28:99–109

    Article  Google Scholar 

  19. Sarabi N, Ghavamnasiri M, Forooghbakhsh A (2009) The influence of adhesive luting systems on bond strength and failure mode of an indirect micro ceramic resin-based composite veneer. J Contemp Dent Pract 10:33–40

    PubMed  Google Scholar 

  20. D'Arcangelo C, De Angelis F, D’Amario M, Zazzeroni S, Ciampoli C, Caputi S (2009) The influence of luting systems on the microtensile bond strength of dentin to indirect resin-based composite and ceramic restorations. Oper Dent 34:328–336

    Article  PubMed  Google Scholar 

  21. Rekow ED, Harsono M, Janal M, Thompson VP, Zhang G (2006) Factorial analysis of variables influencing stress in all-ceramic crowns. Dent Mater 22:125–132

    Article  PubMed  Google Scholar 

  22. Scherrer SS, de Rijk WG (1993) The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 6:462–467

    PubMed  Google Scholar 

  23. Kinney JH, Marshall SJ, Marshall GW (2003) The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med 14:13–29

    Article  PubMed  Google Scholar 

  24. Yang R, Arola D, Han Z, Zhang X (2014) A comparison of the fracture resistance of three machinable ceramics after thermal and mechanical fatigue. J Prosthet Dent 112:878–885

    Article  PubMed  Google Scholar 

  25. Kelly JR (1995) Perspectives on strength. Dent Mater 11:103–110

    Article  PubMed  Google Scholar 

  26. Kelly JR (1999) Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent 81:652–661

    Article  PubMed  Google Scholar 

  27. Al-Akhali M, Chaar MS, Elsayed A, Samran A, Kern M (2017) Fracture resistance of ceramic and polymer-based occlusal veneer restorations. J Mech Behav Biomed Mater 74:245–250

    Article  PubMed  Google Scholar 

  28. Edelhoff D, Sorensen JA (2002) Tooth structure removal associated with various preparation designs for anterior teeth. J Prosthet Dent 87:503–509

    Article  PubMed  Google Scholar 

  29. Edelhoff D, Sorensen JA (2002) Tooth structure removal associated with various preparation designs for posterior teeth. Int J Periodontics Restorative Dent 22:241–249

    PubMed  Google Scholar 

  30. Davis GR, Tayeb RA, Seymour KG, Cherukara GP (2012) Quantification of residual dentine thickness following crown preparation. J Dent 40:571–576

    Article  PubMed  Google Scholar 

  31. Quinn GD, Hoffman K, Quinn JB (2012) Strength and fracture origins of a feldspathic porcelain. Dent Mater 28:502–511

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mörmann WH, Stawarczyk B, Ender A, Sener B, Attin T, Mehl A (2013) Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and martens hardness. J Mech Behav Biomed Mater 20:113–125

    Article  PubMed  Google Scholar 

  33. Kirsch C, Ender A, Attin T, Mehl A (2017) Trueness of four different milling procedures used in dental CAD/CAM systems. Clin Oral Investig 21(2):551–558

    Article  PubMed  Google Scholar 

  34. Argyrou R, Thompson GA, Cho SH, Berzins DW (2016) Edge chipping resistance and flexural strength of polymer infiltrated ceramic network and resin nanoceramic restorative materials. J Prosthet Dent 116:397–403

    Article  PubMed  Google Scholar 

  35. Quinn GD, Giuseppetti AA, Hoffman KH (2014) Chipping fracture resistance of dental CAD/CAM restorative materials: part I—procedures and results. Dent Mater 30:99–111

    Article  Google Scholar 

  36. Mörmann WH, Bindl A, Lüthy H, Rathke A (1998) Effects of preparation and luting system on all-ceramic computer-generated crowns. Int J Prosthodont 11:333–339

    PubMed  Google Scholar 

  37. Scherrer SS, de Rijk WG, Belser UC, Meyer JM (1994) Effect of cement film thickness on the fracture resistance of a machinable glass-ceramic. Dent Mater 10:172–177

    Article  PubMed  Google Scholar 

  38. Bindl A, Luthy H, Mörmann WH (2006) Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dent Mater 22:29–36

    Article  PubMed  Google Scholar 

  39. Duan Y, Griggs JA (2015) Effect of elasticity on stress distribution in CAD/CAM dental crowns: glass ceramic vs. polymer-matrix composite. J Dent 43:742–749

    Article  PubMed  Google Scholar 

  40. Dejak B, Mlotkowski A, Langot C (2012) Three-dimensional finite element analysis of molars with thin-walled prosthetic crowns made of various materials. Dent Mater 28:433–441

    Article  PubMed  Google Scholar 

  41. Krejci I, Daher R (2017) Stress distribution difference between lava ultimate full crowns and IPS e.max CAD full crowns on a natural tooth and on tooth-shaped implant abutments. Odontology 105:254–256

    Article  PubMed  Google Scholar 

  42. Gilbert S, Keul C, Roos M, Edelhoff D, Stawarczyk B (2016) Bonding between CAD/CAM resin and resin composite cements dependent on bonding agents: three different in vitro test methods. Clin Oral Investig 20:227–236

    Article  PubMed  Google Scholar 

  43. Bähr N, Keul C, Edelhoff D, Eichberger M, Roos M, Gernet W, Stawarczyk B (2013) Effect of different adhesives combined with two resin composite cements on shear bond strength to polymeric CAD/CAM materials. Dent Mater J 32:492–501

    Article  PubMed  Google Scholar 

  44. Stawarczyk B, Krawczuk A, Ilie N (2015) Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic. Clin Oral Investig 19:299–308

    Article  PubMed  Google Scholar 

  45. Nobuaki A, Keiichi Y, Takashi S (2015) Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements. J Appl Oral Sci 23:629–636

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lise DP, Van Ende A, De Munck J, Vieira L, Baratieri LN, Van Meerbeck B (2017) Microtensile bond strength of composite cement to novel CAD/CAM materials as a function of surface treatment and aging. Oper Dent 42:73–81

    Article  PubMed  Google Scholar 

  47. Schepke U, Meijer HJ, Vermeulen KM, Raghoebar CMS (2016) Clinical bonding of resin nano ceramic restorations to zirconia abutments: a case series within a randomized clinical trial. Clin Implant Dent Relat Res 18:984–992

    Article  PubMed  Google Scholar 

  48. Lohbauer U, Belli R, Cune MS, Schepke U (2017) Fractography of clinically fractured, implant-supported dental computer-aided design and computer-aided manufacturing crowns. SAGE Open Med Case Rep 5:2050313x17741015

    PubMed  PubMed Central  Google Scholar 

  49. Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H, Lohbauer U (2017) Chairside CAD/CAM materials. Part 1: measurement of elastic constants and microstructural characterization. Dent Mater 33:84–98

    Article  PubMed  Google Scholar 

  50. Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, Danzer R, Lohbauer U (2017) Chairside CAD/CAM materials. Part 2: flexural strength testing. Dent Mater 33:99–109

    Article  PubMed  Google Scholar 

  51. Shah MB, Ferracane JL, Kruzic JJ (2009) R-curve behavior and micromechanisms of fracture in resin based dental restorative composites. J Mech Behav Biomed Mater 2:502–511

    Article  PubMed  Google Scholar 

  52. Wendler M, Belli R, Valladares D, Petschelt A, Lohbauer U (2018) Chairside CAD/CAM materials. Part 3: cyclic fatigue parameters and lifetime predictions. Dent Mater 34:910–921

    Article  PubMed  Google Scholar 

  53. Blackburn C, Rask H, Awada A (2018) Mechanical properties of resin-ceramic CAD-CAM materials after accelerated aging. J Prosthet Dent 119:954–958

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Division of Computerized Restorative Dentistry, Center of Dental Medicine, University of Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Zimmermann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, M., Ender, A., Egli, G. et al. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin Oral Invest 23, 2777–2784 (2019). https://doi.org/10.1007/s00784-018-2717-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2717-2

Keywords

Navigation