Skip to main content

Advertisement

Log in

Estrogen signaling impacts temporomandibular joint and periodontal disease pathology

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Women experience a higher incidence of oral diseases including periodontal diseases and temporomandibular joint disease (TMD) implicating the role of estrogen signaling in disease pathology. Fluctuating levels of estrogen during childbearing age potentiates facial pain, high estrogen levels during pregnancy promote gingivitis, and low levels of estrogen during menopause predisposes the TMJ to degeneration and increases alveolar bone loss. In this review, an overview of estrogen signaling pathways in vitro and in vivo that regulate pregnancy-related gingivitis, TMJ homeostasis, and alveolar bone remodeling is provided. Deciphering the specific estrogen signaling pathways for individual oral diseases is crucial for potential new drug therapies to promote and maintain healthy tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jin LJ, et al. Global burden of oral diseases: emerging concepts, management and interplay with systemic health. Oral Dis. 2016;22(7):609–19.

    PubMed  Google Scholar 

  2. Kessler JL. A literature review on women’s oral health across the life span. Nurs Womens Health. 2017;21(2):108–21.

    PubMed  Google Scholar 

  3. Bueno CH, et al. Gender differences in temporomandibular disorders in adult populational studies: a systematic review and meta-analysis. J Oral Rehabil. 2018;45(9):720–9.

    PubMed  Google Scholar 

  4. Cauley JA. Estrogen and bone health in men and women. Steroids. 2015;99(Pt A):11–5.

    PubMed  Google Scholar 

  5. Chidi-Ogbolu N, Baar K. Effect of estrogen on musculoskeletal performance and injury risk. Front Physiol. 2018;9:1834.

    PubMed  Google Scholar 

  6. Ohrbach R, et al. Clinical findings and pain symptoms as potential risk factors for chronic TMD: descriptive data and empirically identified domains from the OPPERA case-control study. J Pain. 2011;12(11 Suppl):27–45.

    Google Scholar 

  7. Manfredini D, et al. Research diagnostic criteria for temporomandibular disorders: a systematic review of axis I epidemiologic findings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(4):453–62.

    PubMed  Google Scholar 

  8. LeResche L. Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors. Crit Rev Oral Biol Med. 1997;8(3):291–305.

    PubMed  Google Scholar 

  9. LeResche L, et al. Use of exogenous hormones and risk of temporomandibular disorder pain. Pain. 1997;69(1–2):153–60.

    PubMed  Google Scholar 

  10. Warren MP, Fried JL. Temporomandibular disorders and hormones in women. Cells Tissues Organs. 2001;169(3):187–92.

    PubMed  Google Scholar 

  11. Slade GD, et al. Signs and symptoms of first-onset TMD and sociodemographic predictors of its development: the OPPERA prospective cohort study. J Pain. 2013;14(12 Suppl):T20.e1-3–32.e1-3.

    Google Scholar 

  12. Slade GD, et al. Painful temporomandibular disorder: decade of discovery from OPPERA studies. J Dent Res. 2016;95(10):1084–92.

    PubMed  PubMed Central  Google Scholar 

  13. Macfarlane TV, et al. Oro-facial pain in the community: prevalence and associated impact. Commun Dent Oral Epidemiol. 2002;30(1):52–60.

    Google Scholar 

  14. Lovgren A, et al. Temporomandibular pain and jaw dysfunction at different ages covering the lifespan—a population based study. Eur J Pain. 2016;20(4):532–40.

    PubMed  Google Scholar 

  15. Maixner W, et al. Overlapping chronic pain conditions: implications for diagnosis and classification. J Pain. 2016;17(9 Suppl):T93–107.

    PubMed  PubMed Central  Google Scholar 

  16. Schiffman E, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the international RDC/TMD Consortium Network* and Orofacial Pain Special Interest Groupdagger. J Oral Facial Pain Headache. 2014;28(1):6–27.

    PubMed  PubMed Central  Google Scholar 

  17. Guarda-Nardini L, et al. Age-related differences in temporomandibular disorder diagnoses. Cranio. 2012;30(2):103–9.

    PubMed  Google Scholar 

  18. Back K, et al. Relation between osteoporosis and radiographic and clinical signs of osteoarthritis/arthrosis in the temporomandibular joint: a population-based, cross-sectional study in an older Swedish population. Gerodontology. 2017;34(2):187–94.

    PubMed  Google Scholar 

  19. Jagur O, et al. Relationship between radiographic changes in the temporomandibular joint and bone mineral density: a population based study. Stomatologija. 2011;13(2):42–8.

    PubMed  Google Scholar 

  20. Dervis E. Oral implications of osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(3):349–56.

    PubMed  Google Scholar 

  21. Brett KM, Madans JH. Use of postmenopausal hormone replacement therapy: estimates from a nationally representative cohort study. Am J Epidemiol. 1997;145(6):536–45.

    PubMed  Google Scholar 

  22. Martin MD, et al. Intubation risk factors for temporomandibular joint/facial pain. Anesth Prog. 2007;54(3):109–14.

    PubMed  PubMed Central  Google Scholar 

  23. Lora VR, et al. Prevalence of temporomandibular disorders in postmenopausal women and relationship with pain and HRT. Braz Oral Res. 2016;30(1):e100.

    PubMed  Google Scholar 

  24. Nekora-Azak A, et al. Estrogen replacement therapy among postmenopausal women and its effects on signs and symptoms of temporomandibular disorders. Cranio. 2008;26(3):211–5.

    PubMed  Google Scholar 

  25. Hatch JP, et al. Is use of exogenous estrogen associated with temporomandibular signs and symptoms? J Am Dent Assoc. 2001;132(3):319–26.

    PubMed  Google Scholar 

  26. Mayoral VA, Espinosa IA, Montiel AJ. Association between signs and symptoms of temporomandibular disorders and pregnancy (case control study). Acta Odontol Latinoam. 2013;26(1):3–7.

    PubMed  Google Scholar 

  27. Ivković N, et al. Relationship between symptoms of temporomandibular disorders and estrogen levels in women with different menstrual status. J Oral Facial Pain Headache. 2018;32(2):151–8.

    PubMed  Google Scholar 

  28. LeResche L, et al. Musculoskeletal orofacial pain and other signs and symptoms of temporomandibular disorders during pregnancy: a prospective study. J Orofac Pain. 2005;19(3):193–201.

    PubMed  Google Scholar 

  29. Turner JA, et al. Targeting temporomandibular disorder pain treatment to hormonal fluctuations: a randomized clinical trial. Pain. 2011;152(9):2074–84.

    PubMed  PubMed Central  Google Scholar 

  30. Almarza AJ, et al. Preclinical animal models for temporomandibular joint tissue engineering. Tissue Eng Part B Rev. 2018;24(3):171–8.

    PubMed  PubMed Central  Google Scholar 

  31. Juran CM, Dolwick MF, McFetridge PS. Engineered microporosity: enhancing the early regenerative potential of decellularized temporomandibular joint discs. Tissue Eng Part A. 2015;21(3–4):829–39.

    PubMed  PubMed Central  Google Scholar 

  32. Rees L. The structure and function of the mandibular joint. Br Dent J. 1954;96(6):125–33.

    Google Scholar 

  33. Nakano T, Scott PG. Changes in the chemical composition of the bovine temporomandibular joint disc with age. Arch Oral Biol. 1996;41(8–9):845–53.

    PubMed  Google Scholar 

  34. Almarza AJ, et al. Biochemical analysis of the porcine temporomandibular joint disc. Br J Oral Maxillofac Surg. 2006;44(2):124–8.

    PubMed  Google Scholar 

  35. Shengyi T, Xu Y. Biomechanical properties and collagen fiber orientation of TMJ discs in dogs: part 1. Gross anatomy and collagen fiber orientation of the discs. J Craniomandib Disord Facial Oral Pain. 1991;5(1):28–34.

    Google Scholar 

  36. Minarelli AM, Del Santo JM, Liberti EA. The structure of the human temporomandibular joint disc: a scanning electron microscopy study. J Orofac Pain. 1997;11(2):95–100.

    PubMed  Google Scholar 

  37. Nakano T, Scott PG. A quantitative chemical study of glycosaminoglycans in the articular disc of the bovine temporomandibular joint. Arch Oral Biol. 1989;34(9):749–57.

    PubMed  Google Scholar 

  38. Detamore MS, et al. Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc. Matrix Biol. 2005;24(1):45–57.

    PubMed  PubMed Central  Google Scholar 

  39. Axelsson S, Holmlund A, Hjerpe A. Glycosaminoglycans in normal and osteoarthrotic human temporomandibular joint disks. Acta Odontol Scand. 1992;50(2):113–9.

    PubMed  Google Scholar 

  40. Allen KD, Athanasiou KA. Tissue engineering of the TMJ disc: a review. Tissue Eng. 2006;12(5):1183–96.

    PubMed  Google Scholar 

  41. Detamore MS, et al. Cell type and distribution in the porcine temporomandibular joint disc. J Oral Maxillofac Surg. 2006;64(2):243–8.

    PubMed  PubMed Central  Google Scholar 

  42. Wright GJ, et al. Tensile biomechanical properties of human temporomandibular joint disc: effects of direction, region and sex. J Biomech. 2016;49(16):3762–9.

    PubMed  PubMed Central  Google Scholar 

  43. Wright GJ, et al. Electrical conductivity method to determine sexual dimorphisms in human temporomandibular disc fixed charge density. Ann Biomed Eng. 2018;46(2):310–7.

    PubMed  Google Scholar 

  44. Wadhwa S, Kapila S. TMJ disorders: future innovations in diagnostics and therapeutics. J Dent Educ. 2008;72(8):930–47.

    PubMed  PubMed Central  Google Scholar 

  45. Jing Y, et al. Chondrocytes directly transform into bone cells in mandibular condyle growth. J Dent Res. 2015;94(12):1668–75.

    PubMed  PubMed Central  Google Scholar 

  46. Luder HU. Age changes in the articular tissue of human mandibular condyles from adolescence to old age: a semiquantitative light microscopic study. Anat Rec. 1998;251(4):439–47.

    PubMed  Google Scholar 

  47. Gepstein A, et al. Association of metalloproteinases, tissue inhibitors of matrix metalloproteinases, and proteoglycans with development, aging, and osteoarthritis processes in mouse temporomandibular joint. Histochem Cell Biol. 2003;120(1):23–32.

    PubMed  Google Scholar 

  48. Silbermann M, Livne E. Age-related degenerative changes in the mouse mandibular joint. J Anat. 1979;129(Pt 3):507–20.

    PubMed  PubMed Central  Google Scholar 

  49. McDaniel JS, et al. Transcriptional regulation of proteoglycan 4 by 17beta-estradiol in immortalized baboon temporomandibular joint disc cells. Eur J Oral Sci. 2014;122(2):100–8.

    PubMed  PubMed Central  Google Scholar 

  50. Kapila S, Xie Y. Targeted induction of collagenase and stromelysin by relaxin in unprimed and beta-estradiol-primed diarthrodial joint fibrocartilaginous cells but not in synoviocytes. Lab Invest. 1998;78(8):925–38.

    PubMed  Google Scholar 

  51. Naqvi T, et al. Relaxin’s induction of metalloproteinases is associated with the loss of collagen and glycosaminoglycans in synovial joint fibrocartilaginous explants. Arthritis Res Ther. 2005;7(1):R1–11.

    PubMed  Google Scholar 

  52. Hashem G, et al. Relaxin and beta-estradiol modulate targeted matrix degradation in specific synovial joint fibrocartilages: progesterone prevents matrix loss. Arthritis Res Ther. 2006;8(4):R98.

    PubMed  PubMed Central  Google Scholar 

  53. Talwar RM, et al. Effects of estrogen on chondrocyte proliferation and collagen synthesis in skeletally mature articular cartilage. J Oral Maxillofac Surg. 2006;64(4):600–9.

    PubMed  Google Scholar 

  54. Cheng P, et al. Effects of estradiol on proliferation and metabolism of rabbit mandibular condylar cartilage cells in vitro. Chin Med J (Engl). 2003;116(9):1413–7.

    Google Scholar 

  55. Yasuoka T, et al. Effect of estrogen replacement on temporomandibular joint remodeling in ovariectomized rats. J Oral Maxillofac Surg. 2000;58(2):189–96.

    PubMed  Google Scholar 

  56. Chen J, et al. Estrogen via estrogen receptor beta partially inhibits mandibular condylar cartilage growth. Osteoarthr Cartil. 2014;22(11):1861–8.

    PubMed  PubMed Central  Google Scholar 

  57. Robinson JL, et al. Estrogen promotes mandibular condylar fibrocartilage chondrogenesis and inhibits degeneration via estrogen receptor alpha in female mice. Sci Rep. 2018;8(1):8527.

    PubMed  PubMed Central  Google Scholar 

  58. Figueroba SR, et al. Dependence of cytokine levels on the sex of experimental animals: a pilot study on the effect of oestrogen in the temporomandibular joint synovial tissues. Int J Oral Maxillofac Surg. 2015;44(11):1368–75.

    PubMed  Google Scholar 

  59. Grogan SP, et al. Relevance of meniscal cell regional phenotype to tissue engineering. Connect Tissue Res. 2017;58(3–4):259–70.

    PubMed  Google Scholar 

  60. Gunja NJ, Athanasiou KA. Passage and reversal effects on gene expression of bovine meniscal fibrochondrocytes. Arthritis Res Ther. 2007;9(5):R93.

    PubMed  PubMed Central  Google Scholar 

  61. Beato M, Herrlich P, Schutz G. Steroid hormone receptors: many actors in search of a plot. Cell. 1995;83(6):851–7.

    PubMed  Google Scholar 

  62. Marino M, Galluzzo P, Ascenzi P. Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics. 2006;7(8):497–508.

    PubMed  PubMed Central  Google Scholar 

  63. Levin ER. Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol. 2005;19(8):1951–9.

    PubMed  PubMed Central  Google Scholar 

  64. Manolagas SC, Kousteni S. Perspective: nonreproductive sites of action of reproductive hormones. Endocrinology. 2001;142(6):2200–4.

    PubMed  Google Scholar 

  65. Milam SB, et al. Sexual dimorphism in the distribution of estrogen receptors in the temporomandibular joint complex of the baboon. Oral Surg Oral Med Oral Pathol. 1987;64(5):527–32.

    PubMed  Google Scholar 

  66. Wang W, Hayami T, Kapila S. Female hormone receptors are differentially expressed in mouse fibrocartilages. Osteoarthr Cartil. 2009;17(5):646–54.

    PubMed  Google Scholar 

  67. Yu SB, et al. The effects of age and sex on the expression of oestrogen and its receptors in rat mandibular condylar cartilages. Arch Oral Biol. 2009;54(5):479–85.

    PubMed  Google Scholar 

  68. Ahmad N, et al. 17beta-estradiol induces MMP-9 and MMP-13 in TMJ fibrochondrocytes via estrogen receptor alpha. J Dent Res. 2018;97(9):1023–30.

    PubMed  PubMed Central  Google Scholar 

  69. Robinson JL, et al. Estrogen receptor alpha mediates mandibular condylar cartilage growth in male mice. Orthod Craniofac Res. 2017;20(Suppl 1):167–71.

    PubMed  PubMed Central  Google Scholar 

  70. Vinel A, et al. Respective role of membrane and nuclear estrogen receptor (ER) α in the mandible of growing mice: implications for ERα modulation. J Bone Miner Res. 2018;33(8):1520–31.

    PubMed  PubMed Central  Google Scholar 

  71. Kamiya Y, et al. Increased mandibular condylar growth in mice with estrogen receptor beta deficiency. J Bone Miner Res. 2013;28(5):1127–34.

    PubMed  Google Scholar 

  72. Robinson JL, et al. Sex differences in the estrogen-dependent regulation of temporomandibular joint remodeling in altered loading. Osteoarthr Cartil. 2017;25(4):533–43.

    PubMed  Google Scholar 

  73. Ye T, et al. Differential effects of high-physiological oestrogen on the degeneration of mandibular condylar cartilage and subchondral bone. Bone. 2018;111:9–22.

    PubMed  Google Scholar 

  74. Torres-Chavez KE, et al. Sexual dimorphism on cytokines expression in the temporomandibular joint: the role of gonadal steroid hormones. Inflammation. 2011;34(5):487–98.

    PubMed  Google Scholar 

  75. Wang XD, et al. Estrogen aggravates iodoacetate-induced temporomandibular joint osteoarthritis. J Dent Res. 2013;92(10):918–24.

    PubMed  Google Scholar 

  76. Xue XT, et al. Sexual dimorphism of estrogen-sensitized synoviocytes contributes to gender difference in temporomandibular joint osteoarthritis. Oral Dis. 2018;24(8):1503–13.

    PubMed  Google Scholar 

  77. Okuda T, et al. The effect of ovariectomy on the temporomandibular joints of growing rats. J Oral Maxillofac Surg. 1996;54(10):1201–10.

    PubMed  Google Scholar 

  78. Vetvik KG, MacGregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017;16(1):76–87.

    PubMed  Google Scholar 

  79. Delaruelle Z, et al. Male and female sex hormones in primary headaches. J Headache Pain. 2018;19(1):117.

    PubMed  PubMed Central  Google Scholar 

  80. Kim K, Wojczynska A, Lee JY. The incidence of osteoarthritic change on computed tomography of Korean temporomandibular disorder patients diagnosed by RDC/TMD; a retrospective study. Acta Odontol Scand. 2016;74(5):337–42.

    PubMed  Google Scholar 

  81. Alexiou K, Stamatakis H, Tsiklakis K. Evaluation of the severity of temporomandibular joint osteoarthritic changes related to age using cone beam computed tomography. Dentomaxillofac Radiol. 2009;38(3):141–7.

    PubMed  Google Scholar 

  82. Agerberg G, Bergenholtz A. Craniomandibular disorders in adult populations of West Bothnia, Sweden. Acta Odontol Scand. 1989;47(3):129–40.

    PubMed  Google Scholar 

  83. Lindberg MK, et al. Estrogen receptor specificity for the effects of estrogen in ovariectomized mice. J Endocrinol. 2002;174(2):167–78.

    PubMed  Google Scholar 

  84. Wang S, et al. Identification of α2-macroglobulin as a master inhibitor of cartilage-degrading factors that attenuates the progression of posttraumatic osteoarthritis. Arthritis Rheum. 2014;66(7):1843–53.

    Google Scholar 

  85. Herber CB, et al. Estrogen signaling in arcuate Kiss1 neurons suppresses a sex-dependent female circuit promoting dense strong bones. Nat Commun. 2019;10(1):163.

    PubMed  PubMed Central  Google Scholar 

  86. Coogan JS, et al. Determination of sex differences of human cadaveric mandibular condyles using statistical shape and trait modeling. Bone. 2018;106:35–41.

    PubMed  Google Scholar 

  87. Kim DG, et al. Sex dependent mechanical properties of the human mandibular condyle. J Mech Behav Biomed Mater. 2017;71:184–91.

    PubMed  Google Scholar 

  88. Iwasaki LR, et al. TMJ energy densities in healthy men and women. Osteoarthr Cartil. 2017;25(6):846–9.

    PubMed  PubMed Central  Google Scholar 

  89. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–20.

    PubMed  Google Scholar 

  90. Armitage GC. Periodontal diagnoses and classification of periodontal diseases. Periodontol. 2000;2004(34):9–21.

    Google Scholar 

  91. Figuero E, et al. Effect of pregnancy on gingival inflammation in systemically healthy women: a systematic review. J Clin Periodontol. 2013;40(5):457–73.

    PubMed  Google Scholar 

  92. Ali I, et al. Oral health and oral contraceptive—is it a shadow behind broad day light? A systematic review. J Clin Diagn Res. 2016;10(11):ZE01–6.

    PubMed  PubMed Central  Google Scholar 

  93. Socransky SS, et al. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–44.

    PubMed  Google Scholar 

  94. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27(6):409–19.

    PubMed  PubMed Central  Google Scholar 

  95. Kumar PS. Sex and the subgingival microbiome: do female sex steroids affect periodontal bacteria? Periodontol 2000. 2013;61(1):103–24.

    PubMed  Google Scholar 

  96. Wu M, Chen SW, Jiang SY. Relationship between gingival inflammation and pregnancy. Mediat Inflamm. 2015;2015:623427.

    Google Scholar 

  97. Yang I, et al. Characterizing the subgingival microbiome of pregnant African american women. J Obstet Gynecol Neonatal Nurs. 2019;48(2):140–152. https://doi.org/10.1016/j.jogn.2018.12.003

    Article  PubMed  Google Scholar 

  98. Balan P, et al. Keystone species in pregnancy gingivitis: a snapshot of oral microbiome during pregnancy and postpartum period. Front Microbiol. 2018;9:2360.

    PubMed  PubMed Central  Google Scholar 

  99. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–33.

    PubMed  PubMed Central  Google Scholar 

  100. Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015;294(2):63–9.

    PubMed  PubMed Central  Google Scholar 

  101. Wu M, et al. Sex hormones enhance gingival inflammation without affecting IL-1β and TNF-α in periodontally healthy women during pregnancy. Mediat Inflamm. 2016;2016:4897890.

    Google Scholar 

  102. Bieri RA, et al. Gingival fluid cytokine expression and subgingival bacterial counts during pregnancy and postpartum: a case series. Clin Oral Investig. 2013;17(1):19–28.

    PubMed  Google Scholar 

  103. LaMonte MJ, et al. Five-year changes in periodontal disease measures among postmenopausal females: the Buffalo Osteoperio study. J Periodontol. 2013;84(5):572–84.

    PubMed  Google Scholar 

  104. Wang CJ, McCauley LK. Osteoporosis and periodontitis. Curr Osteoporos Rep. 2016;14(6):284–91.

    PubMed  PubMed Central  Google Scholar 

  105. Wang Y, et al. Association of serum 17beta-estradiol concentration, hormone therapy, and alveolar crest height in postmenopausal women. J Periodontol. 2015;86(4):595–605.

    PubMed  PubMed Central  Google Scholar 

  106. Ucer S, et al. The effects of aging and sex steroid deficiency on the murine skeleton are independent and mechanistically distinct. J Bone Miner Res. 2017;32(3):560–74.

    PubMed  Google Scholar 

  107. Farr J, et al. Independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis: evidence in young adult mice and older humans. J Bone Miner Res. 2019. https://doi.org/10.1002/jbmr.3729

    Article  PubMed  Google Scholar 

  108. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44.

    PubMed  PubMed Central  Google Scholar 

  109. Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol Med. 2001;12(2):125–35.

    PubMed  Google Scholar 

  110. Brunetti G, et al. T cells support osteoclastogenesis in an in vitro model derived from human periodontitis patients. J Periodontol. 2005;76(10):1675–80.

    PubMed  Google Scholar 

  111. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142(12):5050–5.

    PubMed  Google Scholar 

  112. Crotti T, et al. Receptor activator NF kappaB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. J Periodontal Res. 2003;38(4):380–7.

    PubMed  Google Scholar 

  113. Kawai T, et al. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol. 2006;169(3):987–98.

    PubMed  PubMed Central  Google Scholar 

  114. Hughes DE, et al. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med. 1996;2(10):1132–6.

    PubMed  Google Scholar 

  115. Riggs BL. The mechanisms of estrogen regulation of bone resorption. J Clin Investig. 2000;106(10):1203–4 (Comment).

    PubMed  Google Scholar 

  116. D’Amelio P, et al. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone. 2008;43(1):92–100.

    PubMed  Google Scholar 

  117. Cenci S, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Investig. 2000;106(10):1229–37.

    PubMed  Google Scholar 

  118. Ronderos M, et al. Associations of periodontal disease with femoral bone mineral density and estrogen replacement therapy: cross-sectional evaluation of US adults from NHANES III. J Clin Periodontol. 2000;27(10):778–86.

    PubMed  Google Scholar 

  119. Chaves JDP, et al. Sex hormone replacement therapy in periodontology—a systematic review. Oral Dis. 2019. https://doi.org/10.1111/odi.13059

    Article  PubMed  Google Scholar 

  120. Jönsson D, et al. Beneficial effects of hormone replacement therapy on periodontitis are vitamin D associated. J Periodontol. 2013;84(8):1048–57.

    PubMed  Google Scholar 

  121. Polur I, et al. Oestrogen receptor beta mediates decreased occlusal loading induced inhibition of chondrocyte maturation in female mice. Archives of Oral Biol. 2015;60:818–824. https://doi.org/10.1016/j.archoralbio.2015.02.007

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by startup funds from the University of Kansas and NIH NIGMS P20GM103638 (JLR), NIH Predoctoral Training Program on Pharmaceutical Aspects of Biotechnology (T32-GM008359) (PMJ), and R01DE26924 (MPI-MTY, SW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Robinson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, J.L., Johnson, P.M., Kister, K. et al. Estrogen signaling impacts temporomandibular joint and periodontal disease pathology. Odontology 108, 153–165 (2020). https://doi.org/10.1007/s10266-019-00439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-019-00439-1

Keywords

Navigation