Skip to main content

Advertisement

Log in

Histological review of the human cellular cementum with special reference to an alternating lamellar pattern

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Cementum is mineralized tissue with collagen fibrils as its major organic component, and it can be roughly classified into acellular and cellular cementum. The latter generally consists of a stack of cellular intrinsic fiber cementum layers, in which intensely and weakly stained lamellae (each about 2.5 μm thick) alternate in light microscopic observations. It has been suggested that the alternate lamellar pattern results from periodic changes of the intrinsic fiber arrangement, but owing to the difficulty of observing the fibril arrangement three dimensionally, details were not understood until recently. The NaOH-maceration method has been developed to overcome this difficulty. For the past two decades, we have studied the structure and development of cementum by scanning electron microscopy using NaOH-maceration, as well as by light and transmission electron microscopy, and have accumulated a significant amount of data with regard to the structure and formation of cementum. In light of these data, we have arrived at the following conclusions: (1) The alternate lamellar pattern conforms to the twisted plywood model, in which collagen fibrils rotate regularly in the same direction to form two alternating types of lamellae; one type consists of transversely and almost transversely cut fibrils and the other consists of longitudinally and almost longitudinally cut fibrils. (2) The development of the intrinsic fiber arrangement may be controlled by cementoblasts; the cementoblasts move finger-like processes synchronously and periodically to create alternate changes in the intrinsic fiber arrangement, and this dynamic sequence results in the alternate lamellar pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosshardt DD, Nanci A. Immunolocalization of epithelial and mesenchymal matrix constituents in association with inner enamel epithelial cells. J Histochem Cytochem 1998;46:132–142.

    Google Scholar 

  2. Bosshardt DD, Zalzal S, McKee MD, Nanci A. Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec 1998;250:13–33.

    Article  PubMed  Google Scholar 

  3. Nanci A. Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol 1999;126:256–259.

    Article  PubMed  Google Scholar 

  4. Schroeder HE. The periodontium. Berlin Heidelberg New York: Springer; 1986.

    Google Scholar 

  5. Chen M. Observations on the structure of matrix fibers in human cementum [in Japanese]. J Stomatol Soc (Jpn) 1987;54:635–675.

    Google Scholar 

  6. Schroeder HE. Human cellular mixed stratified cementum: a tissue with alternating layers of acellular extrinsic- and cellular intrinsic fiber cementum. Schweiz Manatsschr Zahnmed 1993;103:550–560.

    Google Scholar 

  7. Ohtani O. Three-dimensional organization of the connective tissue fibers of the human pancreas: a scanning electron microscopic study of NaOH treated-tissues. Arch Histol Jpn 1987;50:557–566.

    Article  PubMed  Google Scholar 

  8. Ohtani O, Ushiki T, Taguchi T, kikuta A. Collagen fibrillar networks as skeletal frameworks: a demonstration by cell-maceration/scanning electron microscopic method. Arch Histol Jpn 1988;51:249–261.

    Article  Google Scholar 

  9. Ushiki T, Ide C. Three-dimensional organization of the collagen fibrils in the rat sciatic nerve as revealed by transmission- and scanning electron microscopy. Cell Tissue Res 1990;260:175–184.

    Article  PubMed  Google Scholar 

  10. Yamamoto T, Domon T, Takahashi S, Wakita M. Formation of an alternate lamellar pattern in the advanced cellular cementogenesis in human teeth. Anat Embryol 1997;196:115–121.

    Article  PubMed  Google Scholar 

  11. Yamamoto T, Domon T, Takahashi S, Islam MDN, Suzuki R, Wakita M. The regulation of fiber arrangement in advanced cellular cementogenesis of human teeth. J Periodont Res 1998;33:83–90.

    Article  PubMed  Google Scholar 

  12. Yamamoto T, Domon T, Takahashi S, Islam N, Suzuki R, Wakita M. The structure and function of the cemento-dentinal junction in human teeth. J Periodont Res 1999;34:261–268.

    Article  PubMed  Google Scholar 

  13. Yamamoto T, Domon T, Takahashi S, Islam MN, Suzuki R. The fibrous structure of the cemento-dentinal junction in human molars shown by scanning electron microscopy combined with NaOHmaceration. J Periodont Res 2000;35:59–64.

    Article  PubMed  Google Scholar 

  14. Yamamoto T, Domon T, Takahashi S, Islam N, Suzuki R. Twisted plywood structure of an alternating lamellar pattern in cellular cementum of human teeth. Anat Embryol 2000;202:25–30.

    Article  PubMed  Google Scholar 

  15. Yamamoto T, Domon T, Takahashi S, Suzuki R, Islam MN. The fibrillar structure of cement lines on resorbed root surfaces of human teeth. J Periodont Res 2000;35:208–213.

    Article  PubMed  Google Scholar 

  16. Yamamoto T, Domon T, Takahashi S, Islam MN, Suzuki R. The fibrillar structure of the cemento-dentinal junction in different kinds of human teeth. J Periodont Res 2001;36:317–321.

    Article  PubMed  Google Scholar 

  17. Gebhardt W. Über functionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente der Wirbeltierknochens. II. Spezieller Teil. Der Bau der Haversschen Lamellensysteme und seine funktionelle Bedeutung. Arch Entwickl Mech Org 1906;20:187–322.

    Article  Google Scholar 

  18. Giraud-Guille MM. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 1988;42;167–80.

    Article  PubMed  Google Scholar 

  19. Bromage TG, Lacruz RS, Hogg R, Goldman HM, McFarlin SC, Warshaw J, Dirks W, Perez-Ochoa A, Smolyar I, Enlow DH, Boyde A. Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history. Calcif Tissue Int 2009;84:388–404.

    Article  PubMed  Google Scholar 

  20. Matsuo A, Yajima T. Fibrous components and lamellar structure in cementum [in Japanese]. J Jpn Assoc Periodont 1990;32:140–149.

    Google Scholar 

  21. Matsuo A. Study of the lamellar structures of cementum, its degree of mineralization and fibrous components by light and electron microscopy and by contact micrography [in Japanese]. Higashi Nippon Dent J 1993;12:193–217.

    Google Scholar 

  22. Ziv V, Wagner HD, Weiner S. Microstructure-microhardness relations in parallel fibered and lamellar bone. Bone 1996;18:417–428.

    Article  PubMed  Google Scholar 

  23. Weiner S, Arad T, Sabanay I, Traub W. Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays. Bone 1997;20:509–514.

    Article  PubMed  Google Scholar 

  24. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Ann Rev Mater Sci 1998;28:271–298.

    Article  Google Scholar 

  25. Weiner S, Traub W, Wagner HD. Lamellar bone: structure-function relations. J Struct Biol 1999;126:241–255.

    Article  PubMed  Google Scholar 

  26. Liu D, Wagner HD, Weiner S. Bending and fracture of compact circumferential and osteonal lamellar bone of the baboon tibia. J Mater Sci Mater Med 2000;11:49–60.

    Article  PubMed  Google Scholar 

  27. Giraud-Guille MM, Besseau L, Martin R. Liquid crystalline assemblies of collagen in bone and in vitro systems. J Biomech 2003;36:1571–1579.

    Article  PubMed  Google Scholar 

  28. Hofmann T, Heyroth F, Meinhard H, Fränzel W, Raum K. Assessment of composition and anisotropic elastic properties of secondary osteons lamellae. J Biomech 2006;39;2282–2294.

    Article  PubMed  Google Scholar 

  29. Wagemaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P. Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 2006;1:1–5.

    Article  Google Scholar 

  30. Kazanci M, Wagner HD, Manjubala NI, Gupta HS, Paschalis E, Roschger P, Fratzl P. Raman imaging of two orthogonal planes within cortical bone. Bone 2007;41:456–461.

    Article  PubMed  Google Scholar 

  31. Marotti G. A new theory of bone lamellation. Calcif Tissue Int 1993;53Suppl 1:S47–S56.

    Article  PubMed  Google Scholar 

  32. Marotti G. The structure of bone tissues and the cellular control of their deposition. Ital J Anat Embryol 1996;101:25–79.

    PubMed  Google Scholar 

  33. Ardizzoni A. Osteocyte lacunar size-lamellar thickness relationships in human secondary osteons. Bone 2001;28:215–219.

    Article  PubMed  Google Scholar 

  34. Xu J, Rho JY, Mishra SR, Fan Z. Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique. J Biomed Mater Res 2003;67A:719–726.

    Article  Google Scholar 

  35. Ascenzi MG, Lomovtsev A. Collagen orientation patterns in human secondary osteons, quantified in the radial direction by confocal microscopy. J Struct Biol 2006;153:14–30.

    Article  PubMed  Google Scholar 

  36. Ascenzi A, Bonnuci E. The compressive properties of single osteons. Anat Rec 1968;161:377–392.

    Article  PubMed  Google Scholar 

  37. Ushiki T, Ide C. A modified KOH-collagenase method applied to scanning electron microscopic observations of peripheral nerves. Arch Histol Cytol 1988;51:223–232.

    Article  PubMed  Google Scholar 

  38. Yamamoto T, Hinrichsen KV. The development of cellular cementum in rat molars, with special reference to the fiber arrangement. Anat Embryol 1993;188:537–549.

    Article  PubMed  Google Scholar 

  39. Yamamoto T, Domon T, Takahashi S, Wakita M. Comparative study of the initial genesis of acellular and cellular cementum in rat molars. Anat Embryol 1994;190:521–527.

    Article  PubMed  Google Scholar 

  40. Yamamoto T, Domon T, Takahashi S, Wakita M. Cellular cementogenesis in rat molars: the role of cementoblasts in the deposition of intrinsic matrix fibers of cementum proper. Anat Embryol 1996;193:495–500.

    Article  PubMed  Google Scholar 

  41. Yamamoto T, Domon T, Takahashi S, Islam N, Suzuki R, Wakita M. The structure and function of periodontal ligament cells in acellular cementum in rat molars. Ann Anat 1998;180:519–522.

    PubMed  Google Scholar 

  42. Trelstadt RL, Hayashi K. Tendon collagen fibrillogenesis: intercellular subassemblies and cell surface changes associated with fibril growth. Dev Biol 1979;71:228–242.

    Article  Google Scholar 

  43. Birk DE, Trelstadt RL. Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol 1986;103:231–240.

    Article  PubMed  Google Scholar 

  44. Birk DE, Trelstadt RL. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J Cell Biol 1984;99:2024–2033.

    Article  PubMed  Google Scholar 

  45. Bosshardt DD, Schroeder HE. Initiation of acellular extrinsic fiber cementum on human teeth. A light- and electron-microscopic study. Cell Tissue Res 1991;263:311–324.

    Article  PubMed  Google Scholar 

  46. Bosshardt DD, Schroeder HE. Initial formation of cellular intrinsic fiber cementum in developing human teeth. A light- and electronmicroscopic study. Cell Tissue Res 1992;267:321–335.

    Article  PubMed  Google Scholar 

  47. Boyde A. Enamel. In: Okshe A, Vollrath L, editors. Teeth. Handbook of microscopic anatomy vol 6. Berlin: Springer; 1989. p. 309–473.

    Google Scholar 

  48. Ascenzi A, Benvenuti A. Orientation of collagen fibers at the boundary between two successive osteonic lamellae and its mechanical interpretation. J Biomech 1986;19:455–463.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneyuki Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T., Li, M., Liu, Z. et al. Histological review of the human cellular cementum with special reference to an alternating lamellar pattern. Odontology 98, 102–109 (2010). https://doi.org/10.1007/s10266-010-0134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-010-0134-3

Key words

Navigation