Skip to main content
Log in

Overexpression of the ascorbate peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic Arabidopsis

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Previously, we found that the flood resistance of eggplant (Solanum melongena) and sponge gourd (Luffa cylindrica) enhanced ascorbate peroxidase (APX) activity under flooding, and consequently, both the SmAPX and LcAPX genes were cloned. In this study, the SmAPX and LcAPX genes were transferred under a ubiquitin promoter to Arabidopsis (At) via Agrobacterium tumefaciens. The expression and amount of APX and APX activities of the SmAPX and LcAPX transgenic lines were significantly higher than those of non-transgenic (NT) plants under a waterlogged condition. Furthermore, the SmAPX, LcAPX, At-sucrose synthases (SUS)-1, phosphoenolpyruvate carboxylase (PEPC), and lactate dehydrogenase (LDH) genes were overexpressed in all transgenic Arabidopsis lines after flooding treatment. Compared to NT plants, the malondialdehyde (MDA) contents and H2O2 accumulation were significantly lower, but germination rates were significantly higher in all transgenic lines with higher APX activity, indicating that the overexpression of SmAPX and LcAPX in Arabidopsis could enhance flood tolerance by eliminating H2O2. Moreover, Arabidopsis seedlings overexpressing SmAPX and LcAPX also displayed greater resistance to flooding and less oxidative injury than NT plants subjected to flooding condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelbagi MI, Evangelina SE, Georgina VV, David JM (2009) Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann Bot 103:197–209

    Article  Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D (2010) Submergence tolerant rice: SUB1’s Journey from landrace to modern cultivar. Rice 3:138–147

    Article  Google Scholar 

  • Boris B, Vartapetian A, Michael B, Jackson C (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    Google Scholar 

  • Cabello JV, Giacomelli JI, Piattoni CV, Iglesias AA, Chan RL (2016) The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants. J Biotech 222:73–83

    Article  CAS  Google Scholar 

  • Chen W, Yao Q, Patil GB, Agarwal G, Deshmukh RK, Lin L, Wang B, Wang Y, Prince SJ, Song L, Xu D, Yongqiang CA, Valliyodan B, Varshney RK, Nguyen HT (2016) Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-sEq. Front Plant Sci 19. doi:10.3389/fpls.2016.01044

  • Chiang CM, Chen LFO, Shih SW, Lin KH (2015a) Expression of eggplant ascorbate peroxidase increases the tolerance of transgenic rice plants to flooding stress. J Plant Biochem Biotechnol 24:257–267

  • Chiang CM, Chien HL, Chen LFO, Hsiung TC, Chiang MC, Chen SP, Lin KH (2015b) Overexpression of the genes coding ascorbate peroxidase from Brassica campestris enhances heat tolerance in transgenic Arabidopsis thaliana. Biol Plant 59:305–315

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • De Buck S, Windelsb P, De Looseb M, Depicker A (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable β-glucuronidase accumulation levels. Cell Mol Life Sci 61:2632–2645

    Article  PubMed  Google Scholar 

  • Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA, Burgos L (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11:976–985

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Ethylene- A key regulator of submergence responses in rice. Plant Sci 175:43–51

    Article  CAS  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6:247–256

    Article  CAS  PubMed  Google Scholar 

  • Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Q, Takano T, Liu S (2012) Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa. Plos One 7:e41233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Hsing YI, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF, Sun PK, Ho SL, Lee KW (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63:351–364

    Article  CAS  PubMed  Google Scholar 

  • Hsu FC, Chou MY, Peng HP, Chou SJ, Shih MC (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. Plos One 6:e28888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh LN, Vantoai T, Streeter J, Banowetz G (2005) Regulation of flooding tolerance of SAG12: ipt Arabidopsis plants by cytokinin. J Exp Bot 56:1397–1407

    Article  CAS  Google Scholar 

  • Kim SI, Veena SB, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791

    Article  CAS  PubMed  Google Scholar 

  • Kim MD, Kim YH, Kwon SY, Yun DJ, Kwak SS, Lee HS (2010) Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiol Plant 140:153–162

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Nakamura T, Sugimoto Y, Sakamoto K (2014) Proteomic and metabiolomic analyses of soybean root tips under flooding stress. Protein Pept Lett 21:865–884

    Article  CAS  PubMed  Google Scholar 

  • Kosugi H, Kikugawa K (1985) Thiobarbituric acid reaction of aldehydes and oxidized lipids in glacial acetic acid. Lipids 20:915–920

    Article  CAS  Google Scholar 

  • Kunst A, Draeger B, Ziegenhorn J (1988) Colorimetric methods with glucose oxidase and peroxidase. In: Bergermeyer HU (ed) Methods of enzymatic analysis. VI. Metabolites. I. Carbohydrates. Verlag-Chemie, Weinheim, pp 178–185

    Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Kosmacz M, Weits DA, Giuntol B, Giorgi F, Voesenek LACJ, Perata P, van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419–422

    Article  CAS  PubMed  Google Scholar 

  • Lin KH, Lo HF, Lin CH, Chan MT (2007) Cloning and expression analysis of ascorbate peroxidase gene from eggplant under flooding stress. Bot Stud 48:25–34

    CAS  Google Scholar 

  • Lin KH, Huang HC, Lin CY (2010) Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell Rep 29:575–593

    Article  CAS  PubMed  Google Scholar 

  • Lin KH, Kuo WS, Chiang CM, Hsiung TC, Chiang MC, Lo HF (2013) Study of sponge gourd ascorbate peroxidase and winter squash superoxide dismutase under respective flooding and chilling stresses. Scientia Hort 162:333–340

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–869

    CAS  Google Scholar 

  • Passaia G, Spagnolo FL, Caverzan A, Jardim-Messeder D, Christoff AP, Gaeta ML, de Araujo Mariath JE, Margis R, Margis-Pinheiro M (2013) The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208:93–101

    Article  CAS  PubMed  Google Scholar 

  • Porra R, Thompson W, Kriedelman P (1989) Determination of accurate extraction and simultaneously equation for assaying chlorophyll a and b extracted with different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem Biophys Acta 975:384–394

    CAS  Google Scholar 

  • Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30:399–406

    Article  CAS  PubMed  Google Scholar 

  • Setter TL, Waters I, Wallace I, Bhekasut P, Greenway H (1989) Submergence of rice. I. Growth and photosynthetic response to CO2 enrichment of floodwater. Australian. J Plant Physiol 6:251–263

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Yabuta Y, Youshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, Zhou W, Millar AH (2011) Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol 156:1706–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiono K, Takahashi H, Colmer TD, Nakazono M (2008) Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci 175:52–58

    Article  CAS  Google Scholar 

  • Tadege M, Dupuis I, Kuhlemeier C (1998) Ethanolic fermentation, new functions for an old pathway. Trends Plant Sci 4:320–325

    Article  Google Scholar 

  • Talarczyk A, Krzymowska M, Borucki W, Hennig J (2002) Effect of yeast CTA1 gene expression on response of tobacco plants to tobacco mosaic virus infection. Plant Physiol 129:1032–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas WA, Salerno GL (2010) The Cinderella story of sucrose hydrolysis: alkaline/neutral invertases, from cyanobacteria to unforeseen roles in plant cytosol and organelles. Plant Sci 178:1–8

    Article  CAS  Google Scholar 

  • Varvara PG, Bernard RG (2001) Ethylene and flooding stress in plants. Plant Physiol Biochem 39:1–9

    Article  Google Scholar 

  • Wang W, Vignani R, Scali M, Cresti M (2006) An universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  CAS  PubMed  Google Scholar 

  • Wang HS, Yu C, Zhu ZJ, Yu XC (2011) Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity. Plant Cell Rep 30:1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53

    CAS  PubMed  Google Scholar 

  • Yoshiki Y, Kahhara T, Sakabe Y, Yamasaki T (2001) Superoxide and DPPH radical-scavenging activities of soyasponin β related to gallic acid. Biosic Biotechnol Biochem 65:2162–2165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Hung Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Supplementary material 2 (DOCX 422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, CM., Chen, CC., Chen, SP. et al. Overexpression of the ascorbate peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic Arabidopsis . J Plant Res 130, 373–386 (2017). https://doi.org/10.1007/s10265-016-0902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0902-4

Keywords

Navigation