Skip to main content
Log in

Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles

  • JPR Symposium
  • The Cutting Edge of Photoresponse Mechanisms: Photoreceptor and Signaling Mechanism
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

During the course of evolution through various endosymbiotic processes, diverse photosynthetic eukaryotes acquired blue light (BL) responses that do not use photosynthetic pathways. Photosynthetic stramenopiles, which have red algae-derived chloroplasts through secondary symbiosis, are principal primary producers in aquatic environments, and play important roles in ecosystems and aquaculture. Through secondary symbiosis, these taxa acquired BL responses, such as phototropism, chloroplast photo-relocation movement, and photomorphogenesis similar to those which green plants acquired through primary symbiosis. Photosynthetic stramenopile BL receptors were undefined until the discovery in 2007, of a new type of BL receptor, the aureochrome (AUREO), from the photosynthetic stramenopile alga, Vaucheria. AUREO has a bZIP domain and a LOV domain, and thus BL-responsive transcription factor. AUREO orthologs are only conserved in photosynthetic stramenopiles, such as brown algae, diatoms, and red tide algae. Here, a brief review is presented of the role of AUREOs as photoreceptors for these diverse BL responses and their biochemical properties in photosynthetic stramenopiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUREO:

Aureochrome

BL:

Blue light

bZIP:

Basic leucine zipper

LOV:

Light-oxygen-voltage

References

  • Adl SM, Simpson AGB, Farmer MA et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Article  PubMed  CAS  Google Scholar 

  • Aihara Y, Yamamoto T, Okajima K et al (2012) Mutations in N-terminal flanking region of blue light-sensing light-oxygen and voltage 2 (LOV2) domain disrupt Its repressive activity on kinase domain in the Chlamydomonas phototropin. J Biol Chem 287:9901–9909

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blatt MR (1983) The action spectrum for chloroplast movements and evidence for blue-light-photoreceptor cycling in the alga Vaucheria. Planta 159:267–276

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR, Briggs WR (1980) Blue-light-induced cortical fiber reticulation concomitant with chloroplast aggregation in the alga Vaucheria sessilis. Planta 147:355–362

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR, Wessells NK, Briggs WR (1980) Actin and cortical fiber reticulation in the siphonaceous alga Vaucheria sessilis. Planta 147:363–375

    Article  PubMed  CAS  Google Scholar 

  • Buggeln RG (1974) Negative phototropism of the haptera of Alaria esculenta (Laminarieales). J Phycol 10:80–82

    Google Scholar 

  • Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chapman S, Faulkner C, Kaiserli E et al (2008) The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci USA 105:20038–20043

    Article  PubMed Central  PubMed  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Christie JM, Reymond P, Powell GK et al (1998) Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698–1701

    Article  PubMed  CAS  Google Scholar 

  • Christie JM, Swartz TE, Bongmolni RA, Briggs WR (2002) Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J 32:205–219

    Article  PubMed  CAS  Google Scholar 

  • Clauss H (1971) Wachstum von Dictyota dichotoma in Rot- und Blaulicht. Naturwissenschaften 58:272

    Article  PubMed  CAS  Google Scholar 

  • Cock JM, Sterck L, Rouzé P et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  PubMed  CAS  Google Scholar 

  • Costa BS, Jungandreas A, Jakob T, Weisheit W, Mittag M, Wilhelm C (2013a) Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot 64:483–493

    Article  CAS  Google Scholar 

  • Costa BS, Sachse M, Jungandreas A et al (2013b) Aureochrome 1a is involved in the photoacclimation of the diatom Phaeodactylum tricornutum. PLoS One 8:e74451

    Article  CAS  Google Scholar 

  • Crosson S, Rajagopal S, Moffat K (2003) The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42:2–10

    Article  PubMed  CAS  Google Scholar 

  • Dring MJ, Lüning K (1975a) A photoperiodic response mediated by blue light in the brown alga Scytosiphon lomentaria. Planta 125:25–32

    Article  PubMed  CAS  Google Scholar 

  • Dring MJ, Lüning K (1975b) Induction of two-dimensional growth and hair formation by blue light in the brown alga Scytosiphon lomentaria. Z Pflanzenphysiol 75:107–117

    Article  Google Scholar 

  • Fischer-Arnold (1963) Untersuchungen über die Chloroplastenbewegung bei Vaucheria sessilis. Protoplasma 56:495–520

    Article  CAS  Google Scholar 

  • Fu G, Nagasato C, Yamagishi T, Oka S, Cock JM, Motomura T (2014) Proteomics analysis of heterogeneous flagella in brown algae (Stramenopiles). Protist 165:662–675

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Watanabe M, Shihira-Ishikawa I (1998) Green- and blue-light-mediated chloroplast migration in the centric diatom Pleurosira laevis. Protoplasma 203:214–220

    Article  Google Scholar 

  • Furuya M (1993) Phytochromes: their molecular species, gene families, and functions. Annu Rev Plant Physiol 44:617–645

    Article  CAS  Google Scholar 

  • Green JB, Li W-Y, Manhart JR et al (2000) Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol 124:331–342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grusch M, Schelch K, Riedler et al (2014) Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J 33:1713–1726

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Häder DP, Colombetti G, Leuci F, Quaglia M (1981) Phototaxis in flagellates, Euglena gracilis and Ochromonas danica. Arch Microbiol 130:78–82

    Article  Google Scholar 

  • Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301:1541–1544

    Article  PubMed  CAS  Google Scholar 

  • Haupt W, Schönfeld I (1962) Über das Wirkungsspektrum der “negative Phototaxis” der Vaucheria-Chloroplasten. Ber Dtsch Bot Ges 75:14–23

    Google Scholar 

  • He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843

    Article  PubMed  CAS  Google Scholar 

  • Herman E, Kottke T (2015) Allosterically regulated unfolding of the A’α helix exposes the dimerization site of the blue-light-sensing Aureochrome-LOV domain. Biochemistry 54:1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Herman E, Sachse M, Kroth PG, Kottke T (2013) Blue-light-induced unfolding of the Jα helix allows for the dimerization of Aureochrome-LOV from the diatom Phaeodactylum tricornutum. Biochemistry 52:3094–3101

    Article  PubMed  CAS  Google Scholar 

  • Hisatomi O, Terauchi K, Zikihara K et al (2013) Blue light-induced conformational changes in a light-regulated transcription factor, Aureochrome-1. Plant Cell Physiol 54:93–106

    Article  PubMed  CAS  Google Scholar 

  • Hisatomi O, Nakatani Y, Takeuchi K, Takahashi F, Kataoka H (2014) Blue light-induced dimerization of monomeric Aureochrome-1 enhances its affinity for the target sequence. J Biol Chem 289:17379–17391

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–2123

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Wang L, Zheng M, Zheng M, Tong Y, Li Y (2014) Overexpression of NgAUREO1, the gene coding for aurechrome 1 from Nannochloropsis gaditana, into Saccharomyces cerevisiae leads to a 1.6-fold increase in lipid accumulation. Biotech Lett 36:575–579

    Article  CAS  Google Scholar 

  • Hurd AM (1920) Effect of unilateral monochromatic light and group orientation on the polarity of geminating Fucus spore. Bot Gaz 70:25–50

    Article  Google Scholar 

  • Huysman MJJ, Martens C, Vandepoele K et al (2010) Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol 11:e1003064

    Article  CAS  Google Scholar 

  • Huysman MJJ, Fortunato AE, Matthijs M et al (2013) AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum). Plant Cell 25:215–228

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13:83–89

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A et al (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, kataoka H, Takahashi F (2012) Analysis of light -dependent cell morphology and an accumulation response in Ochromonas danica. Cytologia 77:465–474

    Article  Google Scholar 

  • Ishikawa M, Takahashi F, Nozaki H, Nagasato C, Motomura T, Kataoka H (2009) Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes. Planta 230:543–552

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LF (1958) Tropistic responses of zygotes of the Fucaceae to polarized light. Exp Cell Res 15:282–299

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W et al (2002) bZIP transcription factor Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR, Cashmore AR (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–954

    Article  PubMed  CAS  Google Scholar 

  • Kadota A, Yamada N, Suetsugu et al (2008) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci USA 106:13106–13111

    Article  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N et al (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    Article  PubMed  CAS  Google Scholar 

  • Kagawa T, Kasahara M, Abe T, Yoshida S, Wada M (2004) Function analysis of phototropin2 using fern mutants deficient in blue light-induced chloroplast avoidance movement. Plant Cell Physiol 45:416–426

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Swartz TE, Olney MA et al (2002) Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, Rice, and Chlamydomonas reinhardtii. Plant Physiol 129:762–773

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kasahara M, Trii M, Fujita A, Tainaka K (2010) FMN binding and photochemical properties of plant putative photoreceptors containing two LOV domains, LOV/LOV proteins. J Biol Chem 285:34765–34772

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kashojiya S, Okajima K, Shimada T, Tokutomi S (2015) Essential role of the A’α/Aβ gap in the N-terminal upstream of LOV2 for the blue light signaling from LOV2 to kinase in Arabidopsis photototropin1, a plant blue light receptor. PLoS One 10:e0124284

    Article  PubMed Central  PubMed  Google Scholar 

  • Kataoka H (1975a) Phototropism in Vaucheria geminata I. The action spectrum. Plant Cell Physiol 16:427–437

    Google Scholar 

  • Kataoka H (1975b) Phototropism in Vaucheria geminate II. The mechanism of bending and branching. Plant Cell Physiol 16:439–448

    Google Scholar 

  • Kataoka H (1977) Second positive- and negative phototropism in Vaucheria geminate. Plant Cell Physiol 18:473–476

    CAS  Google Scholar 

  • Kataoka H (1981) Expansion of Vaucheria cell apex caused by blue or red light. Plant Cell Physiol 22:583–595

    Google Scholar 

  • Kataoka H (1988) Negative phototropism in Vaucheria terrestris regulated by calcium I. Dependence on background blue light and external calcium concentration. Plant Cell Physiol 29:1323–1330

    CAS  Google Scholar 

  • Kataoka H, Watanabe M (1993) Negative phototropism in Vaucheria terrestris regulated by calcium III. The role of calcium characterized by use of a high-power argon-ion laser as the source of unilateral blue light. Plant Cell Physiol 34:737–744

    CAS  Google Scholar 

  • Kawai H, Müller DG, Fölster E, Häder DP (1990) Phototactic responses in the gametes of the brown alga, Ectocarpus siliculosus. Planta 182:292–297

    Article  PubMed  CAS  Google Scholar 

  • Kawai H, Kubota M, Kondo T, Watanabe M (1991) Action spectra for phototaxis in zoospores of the brown alga Pseudochorda gracilis. Planta 161:17–22

    Google Scholar 

  • Kerruth S, Ataka K, Frey D, Schlichting I, Heberle J (2014) Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy. PLoS One 9:e103307

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kicherer R (1985) Endogene und Blaulicht-induzierte Ionenströme bei der Alge Vaucheria sessilis. p. 59. Dissertation to Universität Erlangen-Nürnberg

  • Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki KI (2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660

    Article  PubMed  CAS  Google Scholar 

  • Kropf DL (1992) Establishment and expression of cellular polarity in fucoid zygotes. Microbiol Mol Biol Rev 56:316–339

    CAS  Google Scholar 

  • Mitra D, Yang X, Moffat K (2012) Crystal structures of Aureochrome1 LOV suggest new design strategies for optogenetics. Structure 20:698–706

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mohr H (1980) Interaction between blue light and phytochrome in photomorphogenesis. In: Senger H (ed) “The Blue Light Syndrome”. Springer, New York, pp 97–109

    Chapter  Google Scholar 

  • Mouget J-L, Rosa P, Vachoux C, Tremblin G (2005) Enhancement of marennine production by blue light in the diatom Haslea ostrearia. J Appl Phycol 17:437–445

    Article  Google Scholar 

  • Müller S, Clauss H (1976) Aspects of photomorphogenesis in the brown alga Dictyota dichotoma. Z Pflanzenphysiol 78:461–465

    Article  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  PubMed  CAS  Google Scholar 

  • Nakatani Y, Hisatomi O (2015) Molecular mechanism of photozipper, a light-regulated dimerizing module consisting of the bZIP and LOV domains of Aureochrome-1. Biochemistry 54:3302–3313

    Article  PubMed  CAS  Google Scholar 

  • Nash AI, McNulty R, Shillito ME et al (2011) Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc Natl Acad Sci USA 108:9449–9454

    Article  PubMed Central  PubMed  Google Scholar 

  • Oikawa K, Kasahara M, Kiyosue T et al (2003) Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olson RJ, Vaulot D, Chisholm SW (1986) Effects of environmental stresses on the cell cycle of two marine phytoplankton species. Plant Physiol 80:918–925

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oltmanns F (1892) Über die photometrischen Bewegungen der Pflanzen. Flora (Jena) 75:183–266

    Google Scholar 

  • Rosenvinge MLK (1889) Influence des agents extérieurs sur l’organisation polaire et dorsiventrale des plantes. Rev Gen Bot 1:53–62

    Google Scholar 

  • Sakai T, Kagawa T, Kasahara M et al (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98:6969–6974

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Senn G (1908) Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren. Wilhelm-Engelmann, Leipzig

    Google Scholar 

  • Shikata T, Matsunaga S, Iseki M et al (2013) Blue light regulates the rhythm of diurnal vertical migration in the raphidophyte red-tide alga Chattonella antiqua. J Plankton Res 35:542–552

    Article  CAS  Google Scholar 

  • Takahashi F, Hishinuma T, Kataoka H (2001) Blue light-induced branching in Vaucheria. requirement of nuclear accumulation in the irradiated region. Plant Cell Physiol 42:274–285

    Article  PubMed  CAS  Google Scholar 

  • Takahashi F, Yamaguchi K, Hishinuma T, Kataoka H (2003) Mitosis and mitotic wave propagation in the coenocytic alga, Vaucheria terrestris sensu Goetz. J Plant Res 116:381–387

    Article  PubMed  Google Scholar 

  • Takahashi F, Yamagata D, Ishikawa M et al (2007) AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. Proc Natl Acad Sci USA 104:19625–19630

    Article  PubMed Central  PubMed  Google Scholar 

  • Tyler BM, Tripathy S, Zhang X et al (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Toyooka T, Hisatomi O, Takahashi F, Kataoka H, Terazima M (2011) Photoreactions of Aureochrome-1. Biophys J 100:2801–2809

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vieler A, Wu G, Tsai C-H et al (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang W, Wang F, Sun X, Liu F, Liang Z (2013) Comparison of transcriptome under red and blue light culture of Saccharina japonica (Phaeophyceae). Planta 237:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa S, Kamiya M, Ohki K (2014) Photoperiodic regulation of receptacle induction in Sargassum horneri (Phaeophyceae) using clonal thalli. Phycol Res 62:206–213

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by PRESTO Japan Science and Technology Corporation and a grant-in-aid for scientific research (26440156), from the Ministry of Education, Culture, Sports, Science and Technology, Japan. I thank Dr. Ian G. Gleadall (Tohoku University) for critical reading of the manuscript. I am grateful to Dr. Hironao Kataoka (Tohoku University) and Dr. Masahiro Kasahara (Ritsumeikan University) for helpful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Takahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, F. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles. J Plant Res 129, 189–197 (2016). https://doi.org/10.1007/s10265-016-0784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0784-5

Keywords

Navigation