Skip to main content
Log in

Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na+ and K+, but not less Ca2+, in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na+ sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na+ at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na+ transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis cyclic nucleotide gated channel 2 and innate immunity. Plant Cell 19:1081–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Bañuelos MA, Sychrová H, Bleykasten-Grosshans C, Souciet JL, Potier S (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144:2749–2758

    Article  PubMed  Google Scholar 

  • Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA (2007) The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 225:563–573

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21:3554–3566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daniel Gietz R, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  PubMed  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cationchannels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dietrich P, Anschutz U, Kugler A, Becker D (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biol 12(Suppl. 1):80–93

    Article  CAS  PubMed  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finka A, Cuendet AF, Maathuis FJ, Saidi Y, Goloubinoff P (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 24:3333–3348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF (2007) A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci USA 104:14531–14536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800

    Article  CAS  PubMed  Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008) The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol Plant 134:499–507

    Article  CAS  PubMed  Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2010) The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis. Physiol Plant 139:303–312

    CAS  PubMed  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238

    Article  PubMed Central  PubMed  Google Scholar 

  • Kugler A, Köhler B, Palme K, Wolff P, Dietrich P (2009) Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol 9:140

    Article  PubMed Central  PubMed  Google Scholar 

  • Leng Q, Mercier RW, Yao W, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121(3):753–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li XL, Borsics T, Harrington HM, Christopher DA (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Funct Plant Biol 32:643–653

    Article  Google Scholar 

  • Ma W, Ali R, Berkowitz GA (2006) Characterization of plant phenotypes associated with loss of function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 44:494–505

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Filatov V, Herzyk P, Krijger GC, Axelsen BK, Chen S, Green BJ, Li Y, Madagan KL, Sánchez-Fernández R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675–692

    Article  CAS  PubMed  Google Scholar 

  • Moeder W, Urquhart W, Ung H, Yoshioka K (2011) The role of cyclic nucleotide gated ion channels in plant immunity. Mol Plant 4:442–452

    Article  CAS  PubMed  Google Scholar 

  • Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloffa J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    Article  PubMed Central  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC (2004) Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+. J Exp Bot 55:939–949

    Article  CAS  PubMed  Google Scholar 

  • Plett DC, Møller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ 33:612–626

    Article  CAS  Google Scholar 

  • Shi HZ, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Inc., Sunderland, Massachusetts, pp 105–107

    Google Scholar 

  • Tyerman SD (2002) Nonselective cation channels. Multiple functions, commonalities. Plant Physiol 128:327–328

    Article  CAS  PubMed Central  Google Scholar 

  • Wang YF, Munemasa S, Nishimura N, Ren HM, Robert N, Han M, Puzõrjova I, Kollist H, Lee S, Mori I, Schroeder JI (2013) Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 & CNGC6 genes in Arabidopsis guard cells. Plant Physiol 163:578–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ward JM, Hirschi KD, Sze H (2003) Plants pass the salt. Trends Plant Sci 8:200–201

    Article  CAS  PubMed  Google Scholar 

  • Xl Li, Borsics T, Harrington H, Christopher D (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Funct Plant Biol 32:643–653

    Article  Google Scholar 

  • Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:410

    Article  PubMed Central  PubMed  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  CAS  PubMed  Google Scholar 

  • Yu IC, Parker J, Bent AF (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci USA 95:7819–7824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Alonso Rodríguez-Navarro (at Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid) to provide Na+ sensitive yeast mutant strain B31. This work is supported by grants from National Basic Research Program of China (2012CB114200), NSFC grants (31171461 and 91117003), and the Fundamental Research Funds for the Central Universities (KYTZ201402) to W Zhang, and grants from National Natural Science Foundation of China (31100194 and 31470364) and the Fundamental Research Funds for the Central Universities (KYZ201423) to Q. Zhang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Zhang or Wenhua Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10265_2014_679_MOESM1_ESM.ppt

Supplementary material 1 (PPT 396 kb). Fig. S1 Salt tolerance of seedlings. a Expression of CNGC10 as determined by RT-PCR in shoots (top) and roots (bottom) of cngc10, over-expressing lines (OE-1, OE-3), complemented lines (COM-2, COM-5), and the WT. EF1α was used as the reference gene. b Four-day-old seedlings of cngc10, OE-1, OE-3, COM-2, COM-5, and WT were transferred to 1/2 MS (control) (top) or medium containing 200 mM NaCl (middle) or 400 mM mannitol (bottom). Photographs were taken on day 4 (NaCl treatment) or 14 (mannitol treatment or control). Fig. S2 Growth curves and ion contents of yeasts grown in Na+-free medium. a Growth curves of CNGC10-, HKT1;1-, and pYES2-transformed B31 exhibited no obvious difference in Na+-free AP medium. b Na+ contents in yeasts grown for 8 h in liquid Na+-free AP medium. c K+ contents in yeasts grown for 8 h in liquid Na+-free AP medium. d Ca2+ contents in yeasts after growth for 8 h in liquid Na+-free AP medium. Values are mean ± SE (n = 5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Jing, W., Zhang, Q. et al. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis . J Plant Res 128, 211–220 (2015). https://doi.org/10.1007/s10265-014-0679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0679-2

Keywords

Navigation