Skip to main content
Log in

The carbohydrate-binding module of Fragaria × ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities “in vitro”

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

A putative carbohydrate binding module (CBM) from strawberry (Fragaria × ananassa Duch.) expansin 2 (CBM-FaExp2) was cloned and the encoding protein was over-expressed in Escherichia coli and purified in order to evaluate its capacity to bind different cell wall polysaccharides “in vitro”. The protein CBM-FaExp2 bound to microcrystalline cellulose, xylan and pectin with different affinities (Kad = 33.6 ± 0.44 mL g−1, Kad = 11.37 ± 0.87 mL g−1, Kad = 10.4 ± 0.19 mL g−1, respectively). According to “in vitro” enzyme assays, this CBM is able to decrease the activity of cell wall degrading enzymes such as polygalacturonase, endo-glucanase, pectinase and xylanase, probably because the binding of CBM-FaExp2 to the different substrates interferes with enzyme activity. The results suggest that expansins would bind not only cellulose but also a wide range of cell wall polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Barka EA, Kalantari S, Makhlouf J, Arul J (2000) Impact of UV-C irradiation on the cell wall-degrading enzymes during ripening of tomato (Lycopersicon esculentum L.) fruit. J Agric Food Chem 48:667–671

    Article  PubMed  CAS  Google Scholar 

  • Bhandari S, Fujino T, Thammanagowda S, Zhang D, Xu F, Joshi CP (2006) Xylem-specific and stress-responsive coexpression of Korrigan endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees. Planta 224:828–837

    Article  PubMed  CAS  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Lashbrook CC, Bennett AB (1994) Plant endo-1,4-β-d-glucanases. Structure, properties, and physiological function. Am Chem Soc Symp Ser 566:100–129

    CAS  Google Scholar 

  • Brummell DA, Hall BD, Bennett AB (1999a) Antisense suppression of tomato endo-1,4-β-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol Biol 40:615–622

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Harpster M, Civello PM, Palys JM, Bennett AB (1999b) Modifications of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    PubMed  CAS  Google Scholar 

  • Callahan AM, Scorza R, Basset C, Nickerson M, Abeles FB (2004) Deletions in an endopolygalacturonase gene cluster correlate non-melting flesh texture in peach. Funct Plant Biol 31:159–168

    Article  CAS  Google Scholar 

  • Chen NJ, Paull RE (2003) Endoxylanase expressed during papaya fruit ripening: purification, cloning and characterization. Funct Plant Biol 30:433–441

    Article  CAS  Google Scholar 

  • Chen L, Coutinho PM, Nikolov Z, Ford C (1995) Deletion analysis of the starch-binding domain of Aspergillus glucoamylase. Protein Eng 8:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Choi D, Lee Y, Cho H, Kende H (2003) Regulation of expansin expression affects growth and development in transgenic rice plants. Plant Cell 15:1386–1398

    Article  PubMed  CAS  Google Scholar 

  • Civello PM, Powell ALT, Sabehat A, Bennett AB (1999) An expansin gene expressed in ripening strawberry fruit. Plant Physiol 121:1273–1279

    Article  PubMed  CAS  Google Scholar 

  • Cleemput G, Hessing M, van Oort M, Deconynck M, Delcour JA (1997) Purification and characterization of a β-d-xylosidase and an endo-xylanase from wheat flour. Plant Physiol 11:377–386

    Google Scholar 

  • Cosgrove DJ (2000a) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000b) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  PubMed  CAS  Google Scholar 

  • Dotto MC, Martínez GA, Civello PM (2006) Expression of expansin genes in strawberry varieties with contrasting fruit firmness. Plant Physiol Biochem 44:301–307

    Article  PubMed  CAS  Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RAJ (1991) Domains in microbial β-1,4-glycanases: sequence conservation, function and enzymes families. Microbiol Rev 55:303–315

    PubMed  CAS  Google Scholar 

  • Gross KC (1982) A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide. HortScience 17:933–934

    CAS  Google Scholar 

  • Guillen D, Santiago M, Linares L, Perez R, Morlon J, Ruiz B, Sanchez S, Rodriguez-Sanoja R (2007) α-Amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl Environ Microbiol 73:3833–3837

    Article  PubMed  CAS  Google Scholar 

  • Hadfield KA, Bennett AB (1998) Polygalacturonases: many genes in search of a function. Plant Physiol 117:337–343

    Article  PubMed  CAS  Google Scholar 

  • Hamaya H, Ito A, Moriguchi T, Kashimura Y (2003) Identification of a new expansin gene closely associated with peach fruit softening. Postharvest Biol Technol 29:1–10

    Article  Google Scholar 

  • Hiwasa K, Rose JC, Nakano R, Inaba A, Kubo Y (2003) Differential expression of seven α-expansin genes during growth and ripening of pear fruit. Physiol Plant 117:564–572

    Article  PubMed  CAS  Google Scholar 

  • Hiwasa K, Nakano R, Hashimoto A, Matsuzaki M, Murayama H, Inaba A, Kub Y (2004) European, Chinese and Japanese pear fruits exhibit differential softening characteristics during ripening. J Exp Bot 27:1–10

    Google Scholar 

  • Levy I, Shani Z, Shoseyov O (2002) Modification of polysaccharides and plant cell wall by endo-1,4-β-glucanase and cellulose-binding domains. Biomol Eng 19:17–30

    Article  PubMed  CAS  Google Scholar 

  • McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci USA 103:4765–4770

    Article  PubMed  CAS  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls. Plant Physiol 107:87–100

    PubMed  CAS  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    PubMed  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H (1998) A plasma membrane-bound putative endo-1,4-β-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:5563–5576

    Article  PubMed  CAS  Google Scholar 

  • Nogata Y, Ohta H, Voragen AGJ (1993) Polygalacturonase in strawberry fruit. Phytochemistry 34:617–620

    Article  CAS  Google Scholar 

  • Obembe OO, Jacobsen E, Visser RGF, Vincken JP (2007a) Expression of an expansin carbohydrate-binding module affects xylem and phloem formation. Afr J Biotechnol 6:1608–1616

    CAS  Google Scholar 

  • Obembe OO, Jacobsen E, Timmers J, Gilbert HJ, Blake AW, Knox JP, Visser RGF, Vincken JP (2007b) Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate cell wall structure and development of tobacco plants. J Plant Res 120:605–617

    Article  PubMed  CAS  Google Scholar 

  • Prabha TN, Bhagyalakshmi N (1998) Metabolism in ripening banana fruit. Phytochemistry 48:915–919

    Article  CAS  Google Scholar 

  • Redgwell RJ, Fry SC (1993) Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening (implications for fruit softening). Plant Physiol 103:1399–1406

    PubMed  CAS  Google Scholar 

  • Rodriguez-Sanoja R, Ruiz B, Guyot JP, Sanchez S (2005) Starch-binding domain affects catalysis in two Lactobacillus R-amylases. Appl Environ Microbiol 71:297–302

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Bennett AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 4:176–183

    Article  PubMed  Google Scholar 

  • Rouau X, Ei-Hayek ML, Moreau D (1994) Effect of an enzyme preparation containing pentosanases on the bread-making quality of flours in relation to changes in pentosan properties. J Cereal Sci 19:259–272

    Article  CAS  Google Scholar 

  • Safra-Dassa L, Shani Z, Danin A, Roiz L, Shoseyov O, Wolf S (2006) Growth modulation of transgenic potato plants by heterologous expression of bacterial carbohydrate-binding module. Mol Breeding 17:355–364

    Article  CAS  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) Protein family review: the expansin superfamily. Genome Biol 6:1–12

    Article  Google Scholar 

  • Schröder R, Wegrzyn TF, Bolitho KM, Redgwell RJ (2004) Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants. Planta 219:590–600

    Article  PubMed  Google Scholar 

  • Trainotti L, Spolaore S, Ferrarese L, Casadoro G (1997) Characterization of ppEG1, a member of a multigene family which encodes endo-β-1,4-glucanase in peach. Plant Mol Biol 34:791–802

    Article  PubMed  CAS  Google Scholar 

  • Urbanowicz BR, Catala C, Irwin D, Wilson DB, Ripoll DR, Rose JKC (2007) A tomato endo-β-1,4-glucanase, SlCel9C1, represents a distinct subclass with a new family of carbohydrate binding modules (CBM49). J Biol Chem 282:12066–12074

    Article  PubMed  CAS  Google Scholar 

  • Villarreal NM, Rosli HG, Martínez GA, Civello PM (2008) Polygalacturonase activity and expression of related genes during ripening of strawberry cultivars with contrasting fruit firmness. Postharvest Biol Technol 47:141–150

    Article  CAS  Google Scholar 

  • Whitney SEC, Gidley MJ, McQueen-Mason SJ (2000) Probing expansin action using cellulose-hemicellulose composites. Plant J 22:327–334

    Article  PubMed  CAS  Google Scholar 

  • Wong KKY, Tan LUL, Saddler JN (1998) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317

    Google Scholar 

  • Yoshida K, Imaizumi N, Kaneko S, Kawagoe Y, Tagiri A, Tanaka H, Nishitani K, Komae K (2006) Carbohydrate-binding module of a rice endo-β-1,4-glycanase, OsCel9A, expressed in auxin-induced lateral root primordia, is post-translationally truncated. Plant Cell Physiol 47:1555–1571

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from CONICET (PIP 0062), ANPCYT (PICT 2006-01140) and UNSAM (Biotechnology Program 2007). Authors thank José Luis Burgos (Comisión de Investigaciones Científicas, CIC) for valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Marcos Civello.

Additional information

C. Nardi and C. Escudero contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nardi, C., Escudero, C., Villarreal, N. et al. The carbohydrate-binding module of Fragaria × ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities “in vitro”. J Plant Res 126, 151–159 (2013). https://doi.org/10.1007/s10265-012-0504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0504-8

Keywords

Navigation