Skip to main content
Log in

Growth modulation of transgenic potato plants by heterologous expression of bacterial carbohydrate-binding module

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Transgenic potato plants (Solanum tuberosum cv. Desiree) expressing the bacterial carbohydrate-binding module (CBM) family III, which is part of the Clostridium cellulovorans CBPA, under control of the CaMV 35S promoter were employed to investigate the influence of this protein on plant development. Eleven independent transgenic plants were found to express the cbm gene, at levels varying from one to four copies. Relative to non-transgenic controls, CBM-expressing plants were characterized by significantly more rapid elongation of the main stem. In addition, under both greenhouse and field conditions, the emergence rate of these plants was higher than in the controls, and their leaf area at early stages of development was larger, resulting in faster accumulation of fresh and dry weight than in control plants. Determination of cell size indicated that epidermal cells in young tissue were significantly larger in CBM-expressing than in control potato plants. These findings suggest that the CBM influence at the cellular level my cause significant alterations in plant growth both in tissue culture and in vivo under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barre A, Rouge P (2002) Homology modeling of the cellulose-binding domain of a pollen allergen from rye grass: structural basis for the cellulose recognition and associated allergenic properties. Biochem Biophys Res Commun 296:1346–1351

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Morag E, Lamed R (1994) The cellulosome: a treasure-trove for biotechnology. Trends Biotechnol 12:379–386

    Article  PubMed  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acid Res 12:8711–8721

    Article  CAS  Google Scholar 

  • Brummell AA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    Article  PubMed  CAS  Google Scholar 

  • Cho HT, Cosgrove DJ (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 15:9783–9788

    Article  Google Scholar 

  • Choi D, Lee Y, Cho HT, Kende H (2003) Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15:1386–1398

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) New genes and new biological roles for expansins. Curr Opin Plant Biol 3:73–78

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA 94:6559–6564

    Article  PubMed  CAS  Google Scholar 

  • De Marino S, Castiglione Morelli MA, Fraternali F, Tamborini E, Musco G, Vrtala S, Dolecek C, Arossio P, Valenta R, Pastore A (1999) An immunoglobulin-like fold in a major plant allergen: the solution structure of Phl p 2 from timothy grass pollen. Structure 7:943–952

    Article  PubMed  CAS  Google Scholar 

  • Doi RH, Goldstein M, Hashida S, Park JS, Takagi M (1994) The Clostridium cellulovorans cellulosome. Crit Rev Microbiol 20:87–93

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987) The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucl Acids Res 15:3257–3273

    Article  PubMed  CAS  Google Scholar 

  • Gilkes NR, Warren RA, Miller RJ, Kilburn DG (1988) Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem 263:10401–10407

    PubMed  CAS  Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RJ, Warren RA (1991) Domains in microbial beta-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55:303–315

    PubMed  CAS  Google Scholar 

  • Goldstein MA, Takagi M, Hashida S, Shoseyov O, Doi RH, Segel IH (1993) Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. J Bacteriol 175:5762–5768

    PubMed  CAS  Google Scholar 

  • Haigler CH (1991) Relationship between polymerization and crystallization in microfibril biogenesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 99–124

    Google Scholar 

  • Kende H, Van der Knapp E, Cho HT (1998) Deepwater rice: a model plant to study stem elongation. Plant Physiol 118:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Levy I, Shoseyov O (2004) Cross bridging proteins in nature and their utilization in bio- and nanotechnology. Curr Protein Pept Sci 5:33–49

    Article  PubMed  CAS  Google Scholar 

  • Levy I, Shani Z, Shoseyov O (2002) Modification of polysaccharides and plant cell wall by endo-1,4-β-glucanase and cellulose-binding domains. Biomol Eng 19:17–30

    Article  PubMed  CAS  Google Scholar 

  • McQueen-Mason SJ, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  PubMed  CAS  Google Scholar 

  • Morag E, Lapidot A, Govorko D, Lamed R, Wilchek M, Bayer EA, Shoham Y (1995) Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 61:1980–1986

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Olesinski AA, Almon E, Navot N, Perl A, Galun E, Lucas WJ, Wolf S (1996) Tissue-specific expression of the tobacco mosaic virus movement protein in transgenic potato plants alters plasmodesmal function and carbohydrate partitioning. Plant Physiol 111:541–550

    PubMed  CAS  Google Scholar 

  • Pilling J, Willmitzer L, Fisahn J (2000) Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L. enhances stem elongation and modifies cation distribution. Planta 210:391–399

    Article  PubMed  CAS  Google Scholar 

  • Rochange SF, Wenzel CL, McQueen-Mason SJ (2001) Impaired growth in transgenic plants over-expressing an expansin isoform. Plant Mol Biol 46:581–589

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratories Press, Cold Spring Harbor

    Google Scholar 

  • Shani Z, Dekel M, Jensen CS, Tzfira T, Goren R, Altman A, Shoseyov O (2000) Arabidopsis thaliana endo-1,4-beta-glucanase (cel1) promoter mediates uidA expression in elongating tissues of aspen (Populus tremula). J Plant Physiol 156:118–120

    CAS  Google Scholar 

  • Shoseyov O, Doi RH (1990) Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proc Natl Acad Sci USA 87:2192–2195

    Article  PubMed  CAS  Google Scholar 

  • Shoseyov O, Takagi M, Goldstein MA, Doi RH (1992) Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc Natl Acad Sci USA 89:3483–3487

    Article  PubMed  CAS  Google Scholar 

  • Shpigel E, Roiz L, Goren R, Shoseyov O (1998) Bacterial cellulose-binding domain modulates in vitro elongation of different plant cells. Plant Physiol 117:1185–1194

    Article  PubMed  CAS  Google Scholar 

  • Smant G, Stokkermans JP, Yan Y, Baum BJ, De TJ, Wang X, Hussey RS, Gommers FJ, Henrissat B, Davis EL, Helder J, Schots A, Bakker J (1998) Endogenous cellulases in animals: isolation of beta-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95:4906–4911

    Article  PubMed  CAS  Google Scholar 

  • Trainotti L, Spolaore S, Pavanello A, Baldan B, Casadoro G (1999) A novel E-type endo-beta-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Mol Biol 40:323–332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This paper is a contribution from the Uri Kinamon Laboratory. L.S.-D. was supported by a scholarship from the Kinamon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shmuel Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safra-Dassa, L., Shani, Z., Danin, A. et al. Growth modulation of transgenic potato plants by heterologous expression of bacterial carbohydrate-binding module. Mol Breeding 17, 355–364 (2006). https://doi.org/10.1007/s11032-006-9007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9007-4

Keywords

Navigation