Skip to main content
Log in

Expressed sequence tags in cultivated peanut (Arachis hypogaea): discovery of genes in seed development and response to Ralstonia solanacearum challenge

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Although an important oil crop, peanut has only 162,030 expressed sequence tags (ESTs) publicly available, 86,943 of which are from cultivated plants. More ESTs from cultivated peanuts are needed for isolation of stress-resistant, tissue-specific and developmentally important genes. Here, we generated 63,234 ESTs from our 5 constructed peanut cDNA libraries of Ralstonia solanacearum challenged roots, R. solanacearum challenged leaves, and unchallenged cultured peanut roots, leaves and developing seeds. Among these ESTs, there were 14,547 unique sequences with 7,961 tentative consensus sequences and 6,586 singletons. Putative functions for 47.8 % of the sequences were identified, including transcription factors, tissue-specific genes, genes involved in fatty acid biosynthesis and oil formation regulation, and resistance gene analogue genes. Additionally, differentially expressed genes, including those involved in ethylene and jasmonic acid signal transduction pathways, from both peanut leaves and roots, were identified in R. solanacearum challenged samples. This large expression dataset from different peanut tissues will be a valuable source for marker development and gene expression analysis. It will also be helpful for finding candidate genes for fatty acid synthesis and oil formation regulation as well as for studying mechanisms of interactions between the peanut host and R. solanacearum pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afroz A, Khan MR, Ahsan N, Komatsu S (2009) Comparative proteomic analysis of bacterial wilt susceptible and resistant tomato cultivars. Peptides 30:1600–1607

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, Tabata S (2000) Generation of 7137 non-redundant expressed sequence tags from a legume, Lotus japonicus. DNA Res 7:127–130

    Article  PubMed  Google Scholar 

  • Bi YP, Liu W, Xia H, Su L, Zhao CZ, Wan SB, Wang XJ (2010) EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.). Genome 53:832–839

    Article  PubMed  CAS  Google Scholar 

  • Boote KJ (1982) Growth stages of peanut (A. hypogaea L.). Peanut Sci 9:35–40

    Article  Google Scholar 

  • Chen YY, Lin YM, Chao TC, Wang JF, Liu AC, Ho FI, Cheng CP (2009) Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol Plant 136:324–335

    Article  PubMed  CAS  Google Scholar 

  • Chi XY, Chen MC, Yang QL, He YN, Pan LJ, Gao Y, Yun SL (2010) Isolation and expression analysis of a β-ketoacyl-acyl carrier protein synthase I gene from Arachis hypogaea L. Legume Genomics Genet 1. doi:10.5376/lgg.2010.5301.0003

  • Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci 49:2029–2036

    Article  CAS  Google Scholar 

  • Chuang RLC, Chen JCF, Chu J, Tzen JTC (1996) Characterization of seed oil bodies and their surface oleosin isoforms from rice embryos. J Biochem 120:74–81

    Article  PubMed  CAS  Google Scholar 

  • Dang PM, Guo B, Scully BT (2008) Identification and analysis of viral sequences in peanut (Arachis hypogaea L.) expressed sequence tags. Phytopathology 98:S44–S44

    Google Scholar 

  • Denyer K, Johnson P, Zeeman S, Smith AM (2001) The control of amylose synthesis. J Plant Physiol 158:479–487

    Article  CAS  Google Scholar 

  • Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409

    Article  PubMed  CAS  Google Scholar 

  • Dittrich H, Kutchan TM, Zenk MH (1992) The jasmonate precursor, 12-oxo-phytodienoic acid, induces phytoalexin synthesis in Petroselinum crispum cell cultures. FEBS Lett 309:33–36

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Ewing RM, Ben Kahla A, Poirot O, Lopez F, Audic S, Claverie JM (1999) Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res 9:950–959

    Article  PubMed  CAS  Google Scholar 

  • Fernandes J, Brendel V, Gai XW, Lal S, Chandler VL, Elumalai P, Galbraith DW, Pierson EA, Walbot V (2002) Comparison of RNA expression profiles based on maize expressed sequence tag frequency analysis and micro-array hybridization. Plant Physiol 128:896–910

    Article  PubMed  Google Scholar 

  • Green P (2004) CrossMatch. http://phrap.org/phrap.docs/general.html

  • Gueguen Y, Cadoret JP, Flament D, Barreau-Roumiguiere C, Girardot AL, Garnier J, Hoareau A, Bachere E, Escoubas JM (2003) Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene 303:139–145

    Article  PubMed  CAS  Google Scholar 

  • Guo BZ, Chen XP, Dang P, Scully BT, Liang XQ, Holbrook CC, Yu JJ, Culbreath AK (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol 8:12

    Article  PubMed  Google Scholar 

  • Guo BZ, Chen XP, Hong YB, Liang XQ, Dang P, Brenneman T, Holbrook CC, Culbreath A (2009) Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Int J Plant Genomics. doi:10.1155/2009/715605

    PubMed  Google Scholar 

  • Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261

    Article  PubMed  CAS  Google Scholar 

  • Hase S, Shimizu A, Nakaho K, Takenaka S, Takahashi H (2006) Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathol 55:537–543

    Article  CAS  Google Scholar 

  • Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T, Seo S, Ohashi Y, Takahashi H (2008) Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol 57:870–876

    Article  CAS  Google Scholar 

  • Jain S, Srivastava S, Sarin NB, Kav NNV (2006) Proteomics reveals elevated levels of PR 10 proteins in saline-tolerant peanut (Arachis hypogaea) calli. Plant Physiol Biochem 44:253–259

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    Article  PubMed  CAS  Google Scholar 

  • Kochert GD, Halward T, Stalker HT (1996) Genetic variation in peanut and its implications in plant breeding. In: Pickersgill B, Lock JM (eds) Advances in legume science 8: legumes of economic importance. Royal Botanic Gardens, Kew, pp 19–30

    Google Scholar 

  • Lee CM, Lee YJ, Lee MH, Nam HG, Cho TJ, Hahn TR, Cho MJ, Sohn U (1998) Large-scale analysis of expressed genes from the leaf of oilseed rape (Brassica napus L.). Plant Cell Rep 17:930–936

    Article  CAS  Google Scholar 

  • Li HG, Wang L, Zhang YS, Lin XD, Liao B, Yan YS, Huang SZ (2005) Cloning and sequencing of the gene Ahy-beta encoding a subunit of peanut conarachin. Plant Sci 168:1387–1392

    Article  CAS  Google Scholar 

  • Li MJ, Li AQ, Xia H, Zhao CZ, Li CS, Wan SB, Bi YP, Wang XJ (2009) Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. J Biosci 34:227–238

    Article  PubMed  CAS  Google Scholar 

  • Li MJ, Wang XJ, Su L, Bi YP, Wan SB (2010a) Characterization of five putative acyl carrier protein (ACP) isoforms from developing seeds of Arachis hypogaea L. Plant Mol Biol Rep 28:365–372

    Article  CAS  Google Scholar 

  • Li MJ, Xia H, Zhao CZ, Li AQ, Li CS, Bi YP, Wan SB, Wang XJ (2010b) Isolation and characterization of putative acetyl-CoA carboxylases in Arachis hypogaea L. Plant Mol Biol Rep 28:58–68

    Article  CAS  Google Scholar 

  • Liang XQ, Chen XP, Hong YB, Liu HY, Zhou GY, Li SX, Guo BZ (2009) Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol 9:35

    Article  PubMed  Google Scholar 

  • Liao BS (2005) A broad review and perspective on breeding for resistance to bacterial wilt. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. The American Phytopathological Society, pp 225–238

  • Lin YM, Chou IC, Wang JF, Ho FI, Chu YJ, Huang PC, Lu DK, Shen HL, Elbaz M, Huang SM, Cheng CP (2008) Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Mol Plant Microbe Interact 21:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Dang P, Bausher MG, Holbrook CC, Lee RD, Lynch RE, Guo BZ (2005a) Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea). Phytopathology 95:381–387

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Dang P, Guo BZ, He G, Holbrook CC, Bausher MG, Lee RD (2005b) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45:346–353

    Article  CAS  Google Scholar 

  • Luo M, Liang XQ, Dang P, Holbrook CC, Bausher MG, Lee RD, Guo BZ (2005c) Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci 169:695–703

    Article  CAS  Google Scholar 

  • Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley RR, Courcelle E, Das U, Durbin R, Falquet L, Fleischmann W, Griffiths-Jones S, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lopez R, Letunic I, Lonsdale D, Silventoinen V, Orchard SE, Pagni M, Peyruc D, Ponting CP, Selengut JD, Servant F, Sigrist CJ, Vaughan R, Zdobnov EM (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318

    Article  PubMed  CAS  Google Scholar 

  • Nobile PM, Lopes CR, Barsalobres-Cavallari C, Quecim V, Coutinho LL, Hoshino AA, Gimenes MA (2008) Peanut genes identified during initial phase of Cercosporidium personatum infection. Plant Sci 174:78–87

    Article  CAS  Google Scholar 

  • Payton P, Kottapalli KR, Rowland D, Faircloth W, Guo BZ, Burow M, Puppala N, Gallo M (2009) Gene expression profiling in peanut using high density oligonucleotide microarrays. BMC Genomics 10:265

    Article  PubMed  Google Scholar 

  • Pickett TA (1950) Composition of developing peanut seed. Plant Physiol 25:210–214

    Article  PubMed  CAS  Google Scholar 

  • Pradhanang PM, Ji P, Momol MT, Olson SM, Mayfield JL, Jones JB (2005) Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Dis 89:989–993

    Article  CAS  Google Scholar 

  • Proite K, Leal-Bertioli S, Bertioli D, Moretzsohn M, da Silva F, Martins N, Guimaraes P (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7:7

    Article  PubMed  Google Scholar 

  • Robatzek S, Bittel P, Chinchilla D, Kochner P, Felix G, Shiu SH, Boller T (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64:539–547

    Article  PubMed  CAS  Google Scholar 

  • Rounsley SD, Glodek A, Sutton G, Adams MD, Somerville CR, Venter JC, Kerlavage AR (1996) The construction of Arabidopsis expressed sequence tag assemblies—a new resource to facilitate gene identification. Plant Physiol 112:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Enugutti B, Rajakumari S, Rajasekharan R (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141:1533–1543

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton SW, Waterston R, Smoller D, Coryell V, Khanna A, Erpelding J, Gai XW, Brendel V, Raph-Schmidt C, Shoop EG, Vielweber CJ, Schmatz M, Pape D, Bowers Y, Theising B, Martin J, Dante M, Wylie T, Granger C (2002) A compilation of soybean ESTs: generation and analysis. Genome 45:329–338

    Article  PubMed  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Nat Acad Sci USA 95:13330–13335

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  PubMed  CAS  Google Scholar 

  • Tatusov R, Fedorova N, Jackson J, Jacobs A, Kiryutin B, Koonin E, Krylov D, Mazumder R, Mekhedov S, Nikolskaya A, Rao BS, Smirnov S, Sverdlov A, Vasudevan S, Wolf Y, Yin J, Natale D (2003) The COG database: an updated version includes eukaryotes. BMC Bioinforma 4:41

    Article  Google Scholar 

  • Tirumalaraju SV, Jain M, Gallo M (2011) Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization. J Plant Physiol 168:481–492

    Article  PubMed  CAS  Google Scholar 

  • Upchurch R (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Guo JH, Lambert KN, Lin Y (2007) Developmental control of Arabidopsis seed oil biosynthesis. Planta 226:773–783

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144

    Article  PubMed  CAS  Google Scholar 

  • Yan YS, Lin XD, Zhang YS, Wang L, Wu KQ, Huang SZ (2005) Isolation of peanut genes encoding arachins and conglutins by expressed sequence tags. Plant Sci 169:439–445

    Article  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  PubMed  CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (2011CB109304-4), the National High Technology Research and Development Program of China (2006AA10A115) and Chinese Agricultural Research System (CARS-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boshou Liao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Yan, L., Lei, Y. et al. Expressed sequence tags in cultivated peanut (Arachis hypogaea): discovery of genes in seed development and response to Ralstonia solanacearum challenge. J Plant Res 125, 755–769 (2012). https://doi.org/10.1007/s10265-012-0491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0491-9

Keywords

Navigation