Skip to main content
Log in

Genomic analysis of phospholipase D family and characterization of GmPLDαs in soybean (Glycine max)

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Phospholipase D (PLD) and its product phosphatidic acid play important roles in the regulation of plant growth, development, and stress responses. The genome database analysis has revealed PLD family in Arabidopsis, rice, poplar and grape. In this study, we report a genomic analysis of 18 putative soybean (Glycine max) PLD genes (GmPLDs), which exist in the 14 of 20 chromosomes. GmPLDs were grouped into six types, α(3), β(4), γ, δ(5), ε(2), and ζ(3), based on gene architectures, protein domains, evolutionary relationship, and sequence identity. These GmPLDs contained two HKD domains, PX/PH domains (for GmPLDζs), and C2 domain (for the other GmPLDs). The expression patterns analyzed by quantitative reverse transcription PCR demonstrated that GmPLDs were expressed differentially in various tissues. GmPLDα1, α2, and β2 were highly expressed in most tissues, whereas GmPLDδ5 was only expressed in flowers and GmPLDζ1 was predominantly expressed in flowers and early pods. The expression of GmPLDα1 and α2 was increased and that of GmPLDγ was decreased by salt stress. GmPLDα1 protein expressed in E. coli was active under the reaction conditions for both PLDα and PLDδ, hydrolyzing the common membrane phospholipids phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The genomic analysis for soybean PLD family provides valuable data for further identity and characterization of their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abousalham A, Teissere M, Gardies AM, Verger R, Noat G (1995) Phospholipase D from soybean (Glycine max L.) suspension-cultured cells: purification, structural and enzymatic properties. Plant Cell Physiol 36:989–996

    PubMed  CAS  Google Scholar 

  • Cheever ML, Sato TK, de Beer T, Kutateladze TG, Emr SD, Overduin M (2001) Phox domain interaction with PtdIns(3)P targets the Vam t-SNARE to vacuole membranes. Nat Cell Biol 3:613–618

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Laxult AM, Goedhart J, Gadella TWJ, Munnik T (2003) Phospholipase D activation correlates with microtubule remorganization in living plant cells. Plant Cell 15:2666–2679

    Article  PubMed  CAS  Google Scholar 

  • Elias M, Potocky M, Cvrckova F, Zarsky V (2002) Molecular diversity of phospholipase D in angiosperms. BMC Genomics 3:2

    Google Scholar 

  • Hiroaki H, Ago T, Ito T, Sumimoto H, Kohda D (2001) Solution structure of the PX domain, a target of the SH3 domain. Nat Struct Biol 8:526–530

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Pan X, Welti R, Wang X (2008) Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20:803–816

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R, Wang X (2009) Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ 33:627–635

    Article  PubMed  CAS  Google Scholar 

  • Kim DU, Roh TY, Lee J, Noh JY, Jang YJ, Hoe KL, Yoo HS, Choi MU (1999) Molecular cloning and functional expression of a phospholipase D from cabbage (Brassica oleracea var capitata). Biochim Biophys Acta 1437:409–414

    PubMed  CAS  Google Scholar 

  • Laxalt AM, ter Riet B, Verdonk JC, Parigi L, Tameling WI, Vossen J, Haring M, Musgrave A, Munnik T (2001) Characterization of five tomato phospholipase D cDNAs: rapid and specific expression of LePLDbeta1 on elicitation with xylanase. Plant J 26:237–247

    Article  PubMed  CAS  Google Scholar 

  • Lein W, Saalbach G (2001) Cloning and direct G-protein regulation of phospholipase D from tobacco. Biochim Biophys Acta 1530:172–183

    PubMed  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 350:1–18

    Article  PubMed  CAS  Google Scholar 

  • Li G, Xue HW (2007) Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295

    Article  PubMed  CAS  Google Scholar 

  • Li W, Li M, Zhang W, Welti R, Wang X (2004) The plasma membrane-bound phospholipase Ddelta enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–33

    Google Scholar 

  • Li M, Welti R, Wang X (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation: role of phospholipase Dζ1 and ζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761

    Article  PubMed  CAS  Google Scholar 

  • Li G, Lin F, Xue H (2007) Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLDβ1 in seed germination. Cell Res 17:881–894

    Article  PubMed  CAS  Google Scholar 

  • Li M, Hong Y, Wang X (2009) Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta 1791:927–935

    PubMed  CAS  Google Scholar 

  • Li Q, Zhang C, Yang Y, Hu X (2010) Genome-wide and molecular evolution analyses of the phospholipase D gene family in poplar and grape. BMC Plant Biol 10:117–131

    Article  Google Scholar 

  • Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome 1:44–54

    Article  CAS  Google Scholar 

  • McGee JD, Roe JL, Sweat TA, Wang X, Guikema JA, Leach JE (2003) Rice phospholipase D isoforms show differential cellular location and gene induction. Plant Cell Physiol 44:1013–1026

    Article  PubMed  CAS  Google Scholar 

  • Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266

    Article  PubMed  CAS  Google Scholar 

  • Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6:227–233

    Article  PubMed  CAS  Google Scholar 

  • Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    Article  PubMed  CAS  Google Scholar 

  • Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T (2003) Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300:1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP (1996) Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains. Protein Sci 5:2353–2357

    Article  PubMed  CAS  Google Scholar 

  • Qin C, Wang X (2002) The Arabidopsis phospholipase D family. Plant Physiol 128:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Qin W, Pappan K, Wang X (1997) Molecular heterogeneity of phospholipase D (PLD). Cloning of PLDgamma and regulation of plant PLDgamma, -beta, and -alpha by polyphosphoinositides and calcium. J Biol Chem 272:28267–28273

    Article  PubMed  CAS  Google Scholar 

  • Qin C, Li M, Qin W, Bahn SC, Wang C, Wang X (2006) Expression and characterization of Arabidopsis phospholipase Dγ2. Biochim Biophys Acta 1761:1450–1458

    PubMed  CAS  Google Scholar 

  • Rizo J, Sudhof TC (1998) C2-domain, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882

    Article  PubMed  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Jackson SA et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Shen P, Wang R, Jing W, Zhang W (2011) Rice phospholipase Dα is involved in salt tolerance by the mediation of H+-ATPase activity and transcription. J Integr Plant Biol 53:289–299

    Article  PubMed  CAS  Google Scholar 

  • Shultz JL, Kurunam D et al (2006) The soybean genome database (SoyGD): a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Res 34:D758–D765

    Article  PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  PubMed  CAS  Google Scholar 

  • Ueki J, Morioka S, Komari T, Kumashiro T (1995) Purification and characterization of phospholipase D (PLD) from (Oryza sativa L.) and cloning of cDNA for PLD from rice and maize (Zea mays L.). Plant Cell Physiol 36:903–914

    PubMed  CAS  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Dyer JH, Zheng L (1993) Purification and immunological analysis of phospholipase D from castor bean endosperm. Arch Biochem Biophys 306:486–494

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Xu L, Zheng L (1994) Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J Biol Chem 269:20312–20317

    PubMed  CAS  Google Scholar 

  • Wang C, Zien CA, Afitlhile M, Welti R, Hildebrand DF, Wang X (2000) Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246

    PubMed  CAS  Google Scholar 

  • Whitaker BD, Smith DL, Green KC (2001) Cloning, characterization and functional expression of a phospholipase D alpha cDNA from tomato fruit. Physiol Plant 112:87–94

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Kuroda M, Yamakawa H, Ashizawa T, Hirayae K, Kurimoto L, Shinya T, Shibuya N (2009) Suppression of a phospholipase D gene, OsPLDβ1, activates defense responses and increases disease resistance in rice. Plant Physiol 150:308–319

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X (2003) The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Wan X, Hong Y, Li W, Wang X (2010) Plant Phospholipase D. In: Munnik T (ed) Lipid signaling in plants. Plant Cell Monographs, vol 16. Springer, Berlin, pp 39–62

  • Zhao J, Wang X (2004) Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem 279:1794–1800

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Krishnamoorthi R, Zockievoshi M, Wang X (2001) Distinct Ca2+ binding properties of novel C2 domains of plant phospholipase Dα and β. J Biol Chem 275:19700–19706

    Article  Google Scholar 

Download references

Acknowledgment

The work is supported by grants from Ministry of Science and Technology in China, Ministry of Education in China (KYT201001), and Jiangsu province (200910 and PAPD) to W. Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Zhou, D., Zhang, Q. et al. Genomic analysis of phospholipase D family and characterization of GmPLDαs in soybean (Glycine max). J Plant Res 125, 569–578 (2012). https://doi.org/10.1007/s10265-011-0468-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-011-0468-0

Keywords

Navigation