Skip to main content
Log in

Functional analysis of Antirrhinum kelloggii flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The enzymes flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) play an important role in flower color by determining the B-ring hydroxylation pattern of anthocyanins, the major floral pigments. F3′5′H is necessary for biosynthesis of the delphinidin-based anthocyanins that confer a violet or blue color to most plants. Antirrhinum majus does not produce delphinidin and lacks violet flower colour while A. kelloggii produces violet flowers containing delphinidin. To understand the cause of this inter-specific difference in the Antirrhinum genus, we isolated one F3′H and two F3′5′H homologues from the A. kelloggii petal cDNA library. Their amino acid sequences showed high identities to F3′Hs and F3′5′Hs of closely related species. Transgenic petunia expressing these genes had elevated amounts of cyanidin and delphinidin respectively, and flower color changes in the transgenics reflected the type of accumulated anthocyanidins. The results indicate that the homologs encode F3′H and F3′5′H, respectively, and that the ancestor of A. majus lost F3′5′H activity after its speciation from the ancestor of A. kelloggii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

F3′H:

Flavonoid 3′-hydroxylase

F3′5′H:

Flavonoid 3′,5′-hydroxylase

References

  • Brugliera F, Barri-Rewell G, Holton TA, Mason JG (1999) Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 19:441–451

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Moran P, Maslyar D (1990) Novel and useful properties of a chimeric plant promoter combining CaMV35S and MAS elements. Plant Mol Biol 15:373–381

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi-Mizutani M, Ohuhara H, Fukui Y, Nakao M, Katsumoto Y, Yonekura-Sakakibara K, Kusumi T, Hase T, Tanaka Y (2003) Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3′-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol 132:1652–1663

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu C-Y, Farcy E, Stevenson TW, Cornish EC (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366:276–279

    Article  PubMed  CAS  Google Scholar 

  • Hoshino A, Morita Y, Choi JD, Saito N, Toki T, Tanaka Y, Iida S (2003) Spontaneous mutations of the flavonoid 3′-hydroxylase gene in the three morning glory species displaying reddish flowers. Plant Cell Physiol 44:990–1001

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Roberts K, Martin C (1992) Temporal and spatial control of expression of anthocyanin biosynthetic genes in developing flowers of Antirrhinurn majus. Plant J 2:425–434

    Article  CAS  Google Scholar 

  • Jones KN, Reithel JS (2001) Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). Am J Bot 88:447–454

    Article  Google Scholar 

  • Katsumoto Y, Mizutani M, Fukui Y, Brugliera F, Holton T, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao G-Q, Nehra N, Lu C-Y, Dyson B, Tsuda S, Ashikari T, Kusumi T, Mason J, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    Article  PubMed  CAS  Google Scholar 

  • Lazo G, Pascal A, Ludwig R (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. BioTechnology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinurn majus. Plant J 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66:194–211

    Article  PubMed  CAS  Google Scholar 

  • Olmstead RG, DePamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA (2001) Disintegration of the Scrophulariaceae. Am J Bot 88:348–361

    Article  PubMed  CAS  Google Scholar 

  • Oyama RK, Baum DA (2004) Phylogenetic relationships of North American Antirrhinum (Veronicaceae). Am J Bot 91:918–925

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Rausher MD (2006) The evolution of flavonoids and their genes. In: Grotewold E (ed) The Science of flavonoids. Springer, Berlin, pp 175–211

    Chapter  Google Scholar 

  • Rausher MD (2008) Evolutionary transitions in floral color. Int J Plant Sci 169:7–21

    Article  CAS  Google Scholar 

  • Schwarz-Sommer Z, Davies B, Hudson A (2003) An everlasting pioneer: the story of Antirrhinum research. Nat Rev Genet 4:655–664

    Article  Google Scholar 

  • Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851

    Article  PubMed  CAS  Google Scholar 

  • Seitz C, Eder C, Deiml B, Kellner S, Martens S, Forkmann G (2006) Cloning, functional identification and sequence analysis of flavonoid 3′-hydroxylase and flavonoid 3,5′-hydroxylase cDNA reveals independent evolution of flavonoid 3′,5′-hydroxylase in the Asteraceae family. Plant Mol Biol 61:365–381

    Article  PubMed  CAS  Google Scholar 

  • Seitz C, Ameres S, Forkmann G (2007) Identification of the molecular basis for the functional difference between flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase. FEBS Lett 581:3429–3434

    Article  PubMed  CAS  Google Scholar 

  • Stickland RG, Harrison BJ (1974) Precursors and genetic control of pigmentation 1. Induced biosynthesis of pelargonidin, cyanidin and delphinidin in Antirrhinum majus. Heredity 33:108–112

    Article  Google Scholar 

  • Tanaka Y (2006) Flower colour and cytochromes P450. Phyochem Rev 5:283–291

    Article  CAS  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Plant pigments for coloration: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Brugliera F, Chandler S (2009) Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10:5350–5369

    Article  PubMed  CAS  Google Scholar 

  • Ueyama U, Suzuki K, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y (2002) Molecular and biochemical characterization of torenia flavonoid 3′-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci 163:253–263

    Article  CAS  Google Scholar 

  • van Engelen FA, Molthoff JW, Conner AJ, Nap J, Pereira A, Stiekema WJ (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4:288–290

    Article  PubMed  Google Scholar 

  • Whibley AC, Langlade NB, Andalo C, Hanna AI, Bangham A, Thebaud C, Coen E (2006) Evolutionary paths underlying flower color variation in Antirrhinum. Science 313:963–966

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Mori M, Kondo T (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26:857–974

    Article  Google Scholar 

  • Zufall RA, Rausher MD (2003) The genetic basis of a flower color polymorphism in the common morning glory (Ipomoea purpurea). J Hered 94:442–448

    Article  PubMed  CAS  Google Scholar 

  • Zufall RA, Rausher MD (2004) Genetic changes associated with floral adaptation restrict future evolutionary potential. Nature 428:847–850

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ludwig for providing Agrobacterium tumefaciens Agl0. Dr. Nelson is acknowledged for the nomenclature of A. kelloggii cytochromes P450. We are also grateful to Dr. Chandler for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishiguro, K., Taniguchi, M. & Tanaka, Y. Functional analysis of Antirrhinum kelloggii flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum . J Plant Res 125, 451–456 (2012). https://doi.org/10.1007/s10265-011-0455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-011-0455-5

Keywords

Navigation