Skip to main content
Log in

Meiotically asynapsis-induced aneuploidy in autopolyploid Arabidopsis thaliana

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

An Erratum to this article was published on 13 January 2010

Abstract

The patterns of homologue segregation are the basis for euploidy or aneuploidy formation in diploids and allo-/auto-polyploids. Homologue segregation in diploids resembles that in allopolyploids during meiosis; however, meiotic chromosome behavior in autopolyploids is complicated by multiplication of homologous chromosome components. Obviously, loss of single chromosomes (or segmented chromosomes) frequently leads to abortion of reproductive gametes in diploids and allopolyploids. In contrast, the consequence of chromosome loss in autopolyploids is effortlessly compensated for by the presence of multiplied chromosome complements. Here, we use the meiotically asynaptic gene asy1, in combination with polyploidization, to elucidate aneuploidy formation in autotetraploid Arabidopsis. The results indicate that, due to homologous asynapsis in meiotic prophase I, retarded chromosome losses could induce aneuploidy during gametogenesis in autotetraploid asy1. The severe loss of individual chromosomes probably reaches the haploid genome among selfed or backcrossed progeny, leading to stochastic chromosome loss in Arabidopsis. Reciprocal crosses of autotetraploid asy1 with wild-type prove a pathway of duoparental transmission of aneuploidy (hypoploidy and hyperploidy). Viable hypoploids over-transmit via male gametes; conversely, viable hyperploids transmit mainly in female gametogenesis. This result suggests a more stringent maternal restriction of ploidy transmission in autopolyploid Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahloowalia BS (1971) Frequency, origin, and survival of aneuploids in tetraploid ryegrass. Genetica 42:129–138

    Article  Google Scholar 

  • Armstrong SJ, Jones GH (2001) Female meiosis in wild-type Arabidopsis thaliana and in two meiotic mutants. Sex Plant Reprod 13:177–183

    Article  Google Scholar 

  • Armstrong SJ, Caryl AP, Jones GH, Franklin FC (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3645–3655

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S (2007) Biological consequences of dosage dependent gene regulatory systems. Biochim Biophys Acta 1769:422–428

    CAS  PubMed  Google Scholar 

  • Boyd WJR, Sisodia NS, Larter EN (1970) A comparative study of the cytological and reproductive behaviour of wheat and triticale subjected to two temperature regimes. Euphytica 19:490–497

    Article  Google Scholar 

  • Caryl AP, Armstrong SJ, Jones GH, Franklin FC (2000) A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1. Chromosoma 109:62–71

    Article  CAS  PubMed  Google Scholar 

  • Dilkes BP, Spielman M, Weizbauer R, Watson B, Burkart-Waco D, Scott RJ, Comai L (2008) The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol 6:2707–2720

    Article  CAS  PubMed  Google Scholar 

  • Duesberg P (2007) Chromosomal chaos and cancer. Sci Am 296:53–59

    Article  Google Scholar 

  • Fras A, Maluszynska J (2004) The correlation between the chromosome variation in callus and genotype of explants of Arabidopsis thaliana. Genetica 121:145–154

    Article  PubMed  Google Scholar 

  • Goodman HM, Ecker JR, Dean C (1995) The genome of Arabidopsis thaliana. Proc Natl Acad Sci USA 24:10831–10835

    Article  Google Scholar 

  • Guo M, Birchler JA (1994) Trans-acting dosage effects on the expression of model gene systems in maize aneuploids. Science 266:1999–2002

    Article  CAS  PubMed  Google Scholar 

  • Havekes FW, Jong JH, Heyting C (1997) Comparative analysis of female and male meiosis in three meiotic mutants of tomato. Genome 40:879–886

    Article  CAS  PubMed  Google Scholar 

  • Henry IM, Dilkes BP, Young K, Watson B, Wu H, Comai L (2005) Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 170:1979–1988

    Article  CAS  PubMed  Google Scholar 

  • Henry IM, Dilkes BP, Comai L (2007) Genetic basis for dosage sensitivity in Arabidopsis thaliana. PLoS Genet 3:e70

    Article  PubMed  Google Scholar 

  • Huettel B, Kreil DP, Matzke M, Matzke AJ (2008) Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genet 4(10):e1000226

    Article  PubMed  Google Scholar 

  • Klinga K (1986) Aneuploidy in induced autotetraploid populations of Festuca pratensis, Lolium multiflorum and Lolium perenne. Hereditas 104:121–130

    Article  Google Scholar 

  • Luig NH (1960) Differential transmission of gametes in wheat. Nature 185:636–637

    Article  Google Scholar 

  • Makarevitch I, Phillips RL, Springer NM (2008) Profiling expression changes caused by a segmental aneuploid in maize. BMC Genomics 9:7

    Article  PubMed  Google Scholar 

  • Matzke MA, Mette MF, Kanno T, Matzke AJ (2003) Does the intrinsic instability of aneuploid genomes have a causal role in cancer. Trends Genet 19:253–256

    Article  CAS  PubMed  Google Scholar 

  • Mittelsten Scheid O, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J (1996) A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci USA 93:7114–7119

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Papp I, Iglesias VA, Moscone EA, Michalowski S, Spiker S, Park YD, Matzke MA, Matzke AJ (1996) Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant J 10:469–478

    Article  CAS  PubMed  Google Scholar 

  • Parry JM, Al-Obaidly A, Al-Walhaib M, Kayani M, Nabeel T, Strefford J, Parry EM (2002) Spontaneous and induced aneuploidy, considerations which may influence chromosome malsegregation. Mutat Res 504:119–129

    CAS  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Ross KJ, Fransz P, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4:551–559

    Article  Google Scholar 

  • Ross KJ, Fransz P, Armstrong SJ, Vizir I, Mulligan B, Franklin FC, Jones GH (1997) Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA transformed lines. Chromosome Res 5:551–559

    Article  CAS  PubMed  Google Scholar 

  • Sanchez Moran E, Armstrong SJ, Santos JL, Franklin FC, Jones GH (2001) Chiasma formation in Arabidopsis thaliana accession Wassileskija and in two meiotic mutants. Chromosome Res 9:121–128

    Article  CAS  PubMed  Google Scholar 

  • Santos JL, Alfaro D, Sanchez-Moran E, Armstrong SJ, Franklin FC, Jones GH (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 2165:1533–1540

    Google Scholar 

  • Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–3341

    CAS  PubMed  Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann N Y Acad Sci 1133:3–25

    Article  CAS  PubMed  Google Scholar 

  • Uchino A, Tanaka K (1995) Occurrence of aneuploid progenies from an asynaptic amphidiploid of Scilla scilloides (lindley) druce II mechanism of production of the various aneuploid progenies. J Plant Res 108:185–194

    Article  Google Scholar 

  • Vinkenoog R, Bushell C, Spielman M, Adams S, Dickinson HG, Scott RJ (2003) Genomic imprinting and endosperm development in flowering plants. Mol Biotechnol 25:149–184

    Article  CAS  PubMed  Google Scholar 

  • Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261

    Article  CAS  PubMed  Google Scholar 

  • Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, Amon A (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709

    Article  CAS  PubMed  Google Scholar 

  • Zhang CH, Li XF, Shen SX, Yuan H, Xuan SX (2008) Determination of n + 1 gamete transmission rate of trisomics and location of gene controlling 2n gamete formation in Chinese cabbage (Brassica rapa). J Integr Plant Biol 51:29–34

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Gregor Mendel Institute of Plant Molecular Biology in Vienna and the Austrian exchange service (ÖAD) for financial support for our research work. We would like to express our gratitude to two anonymous reviewers who provided constructive comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gai-Sheng Zhang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10265-009-0304-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, F., Zhang, GS. Meiotically asynapsis-induced aneuploidy in autopolyploid Arabidopsis thaliana . J Plant Res 123, 87–95 (2010). https://doi.org/10.1007/s10265-009-0262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0262-4

Keywords

Navigation