Skip to main content
Log in

A geostatistical approach to define guidelines for radon prone area identification

  • Published:
Statistical Methods and Applications Aims and scope Submit manuscript

Abstract

Radon is a natural radioactive gas known to be the main contributor to natural background radiation exposure and the major leading cause of lung cancer second to smoking. Indoor radon concentration levels of 200 and 400 Bq/m3 are reference values suggested by the 90/143/Euratom recommendation, above which mitigation measures should be taken in new and old buildings, respectively, to reduce exposure to radon. Despite this international recommendation, Italy still does not have mandatory regulations or guidelines to deal with radon in dwellings. Monitoring surveys have been undertaken in a number of western European countries in order to assess the exposure of people to this radioactive gas and to identify radon prone areas. However, such campaigns provide concentration values in each single dwelling included in the sample, while it is often necessary to provide measures of the pollutant concentration which refer to sub-areas of the region under study. This requires a realignment of the spatial data from the level at which they are collected (points) to the level at which they are necessary (areas). This is known as change of support problem.In this paper, we propose a methodology based on geostatistical simulations in order to solve this problem and to identify radon prone areas which may be suggested for national guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apte MG, Price PN, Nero AV, Revzan KL (1999) Predicting New Hampshire indoor radon concentrations from geologic information and other covariates. Environ Geol 37: 181–194

    Article  Google Scholar 

  • Arbia G (1989) Statistical effect of data transformations: a proposed general framework. In: Goodchild M, Gopal S (eds) The accuracy of spatial data bases. Taylor and Francis, London, pp 249–259

    Google Scholar 

  • Arbia G, Lafratta G (2002) Exploring nonlinear spatial dependence in the tails. Geogr Anal 37: 423–437

    Article  Google Scholar 

  • Bochicchio F, Campos Venuti G, Nuccetelli C, Piermattei S, Risica S, Tommasino L, Torri G (1996) Results of the representative Italian National Survey on radon indoors. Health Phys 17(5): 741–748

    Google Scholar 

  • Bossew P, Dubois G, Tollefsen T (2008) Geological classes as categorical external drift for spatial modelling of the radon potential. J Environ Radioact 99(1): 81–97

    Article  Google Scholar 

  • Chilès D, Delfiner P (1999) Geostatistics modeling spatial uncertainty. Wiley, New York

    MATH  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74: 829–836

    Article  MATH  MathSciNet  Google Scholar 

  • Cramér CH (1930) On the mathematical theory of risk, Forsakringsaktiebolaget Skandias Festskrift. Centraltryckeriet, Stockholm

    Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • de Bartolo D, Alberici A, Gallini R, Maggioni T, Arrigoni S, Cazzaniga P, Cugini A, Olivieri F, Romanelli M, Gallinari G (2005) Piano di monitoraggio per l’individuazione della radon prone areas nella regione Lombardia. Atti del convegno AIRP, Catania 15–17 settembre 2005

  • Diggle JD, Ribeiro PJ (2007) Model-based geostatistics. Springer, New York

    MATH  Google Scholar 

  • Dubois G (2005) An overview of radon surveys in Europe. EUR 21892 EN, EC. Office for Official Publication of the European Communities, Luxembourg, p 168

    Google Scholar 

  • Dubois G, Bossew P, Friedmann H (2007) A geostatistical autopsy of the Austrian indoor radon survey (1992–2002). Sci Total Environ 377(2–3): 378–395

    Google Scholar 

  • Emery X (2005) Variograms of order ω: a tool to validate a bivariate distribution model. Math Geol 37: 163–181

    Article  MATH  Google Scholar 

  • Emery X (2006) Ordinary multigaussian kriging for mapping conditional probabilities of soil properties. Geoderma 132: 75–88

    Article  Google Scholar 

  • Emery X, Ortiz JM (2005) Histogram and variogram inference in the multigaussian model. Stoch Environ Res Risk Assess 19: 48–58

    Article  MATH  Google Scholar 

  • Franco-Marina F, Villalba-Caloca J, Segovia N, Tavera L (2003) Spatial indoor radon distribution in Mexico City. Sci Total Environ 317: 91–103

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Gotway CA, Young LJ (2002) Combining incompatible spatial data. J Am Stat Assoc 97(458): 632–648

    Article  MATH  MathSciNet  Google Scholar 

  • Gunby JA, Darby SC, Miles JCH, Green BMR, Cox DR (1993) Factors affecting indoor radon concentrations in the United Kingdom. Health Phys 64: 2–12

    Google Scholar 

  • Hall P, DiCiccio TJ, Romano JP (1989) On smoothing and the bootstrap. Ann Stat 17: 692–704

    Article  MATH  MathSciNet  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall, London

    MATH  Google Scholar 

  • Matheron G (1971) The theory of regionalised random variables and its applications. Report, vol 5. Centre de Morphologie Mathématique de Fontainebleau, Ecole des Mines de Paris

  • Murphy P, Organo C (2008) A comparative study of lognormal, gamma and beta modelling in radon mapping with recommendations regarding bias, sample sizes and the treatment of outliers. J Radiol Prot 28(3): 293–302

    Article  Google Scholar 

  • Nero AV, Schwehr MB, Nazaroff WW, Revzan KL (1986) Distribution of airborne radon-222 concentrations in US homes. Science 234: 992–997

    Article  Google Scholar 

  • Price PN, Nero AV, Gelman A (1996) Bayesian prediction of mean indoor radon concentrations for Minnesota counties. Health Phys 71: 922–936

    Article  Google Scholar 

  • Regione Veneto, ARPAV (2000) Indagine regionale per l’individuazione delle aree ad alto potenziale di radon nel territorio veneto. http://www.arpa.veneto.it/pubblicazioni/htm/scheda_pub.asp?id=34. Last accessed on July 9 2009.

  • Sesana L, Polla G, Facchini U, de Capitani L (2005) Radon-prone areas in the Lombard plain. J Environ Radioact 82: 51–62

    Article  Google Scholar 

  • Smith BJ, Cowles MK (2007) Correlating point-referenced radon and areal uranium data arising from a common spatial process. JRSS Ser C 56: 313–326

    MathSciNet  Google Scholar 

  • Smith BJ, Field RW (2007) Effect of housing factor and suficial uranium on the spatial prediction of residential radon in Iowa. Environmetrics 18: 481–497

    Article  MathSciNet  Google Scholar 

  • Tuia D, Kanevski M (2008) Indoor radon distribution in Switzerland: lognormality and extreme value theory. J Environ Radioact 99(4): 649–657

    Article  Google Scholar 

  • Verly G (1983) The multi-gaussian approach and its applications to the estimation of local reserves. J Int Assoc Math Geol 15: 259–286

    Article  Google Scholar 

  • Zhu H-C, Charlet JM, Poffijn A (2001) Radon risk mapping in southern Belgium: an application of geostatistical and GIS techniques. Sci Total Environ 272: 203–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Borgoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgoni, R., Quatto, P., Somà, G. et al. A geostatistical approach to define guidelines for radon prone area identification. Stat Methods Appl 19, 255–276 (2010). https://doi.org/10.1007/s10260-009-0128-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-009-0128-x

Keywords

Navigation