Skip to main content

Advertisement

Log in

Expression of MIF and TNFA in psoriatic arthritis: relationship with Th1/Th2/Th17 cytokine profiles and clinical variables

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Psoriatic arthritis (PsA) is an autoimmune inflammatory disease associated with psoriasis. The cause of this pathology is still unknown, but research suggests the diseases are caused by a deregulated cytokine production. MIF is a cytokine associated with immunomodulation of Th1, Th2, and Th17 cytokine profiles in inflammatory diseases. Based on this knowledge, the aim of this study was to determine the association of MIF and TNFA expression with Th1, Th2, and Th17 cytokine profiles in serum levels of PsA patients. A cross-sectional study was performed in 50 PsA patients and 30 control subjects (CS). The cytokine profiles were quantified by BioPlex MagPix system and the mRNA expression levels by real-time PCR. TNFA mRNA expression was 138.81-folds higher in PsA patients than CS (p < 0.001). Regarding MIF mRNA expression, no significant differences were observed; however, a positive correlation was identified between MIF mRNA expression and PsA time of evolution (r = − 0.53, p = 0.009). An increase of Th1 (IFNγ: PsA = 37.1 pg/mL vs. CS = 17 pg/mL, p < 0.05; TNFα: PsA = 24.6 pg/mL vs. CS = 9.8 pg/mL, p < 0.0001) and Th17 cytokine profiles (IL-17: PsA = 6.4 pg/mL vs. CS = 2.7 pg/mL, p < 0.05; IL-22: PsA = 8.4 pg/mL vs. CS = 1.8 pg/mL, p < 0.001), were found in PsA patients. Th2 cytokines were not significantly different in both groups. In conclusion, a high expression of TNFA mRNA, as well as an increase of Th1 and Th17 cytokine profiles evaluated by IFNγ, TNFα, IL-17, and IL-22 cytokines, was observed in PsA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N Eng J Med. 2017;376:957–70.

    Article  Google Scholar 

  2. Gladman DD. Clinical features and diagnostic considerations in psoriatic arthritis. Rheum Dis Clin North Am. 2015;41(4):569–79.

    Article  PubMed  Google Scholar 

  3. Ogdie A, Weiss P. The epidemiology of psoriatic arthritis. Rheum Dis Clin North Am. 2015;41(4):545–68.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Álvarez J, Peláez I, Sanin L, et al. Prevalence of musculoskeletal pain and rheumatic diseases in the southeastern region of Mexico. J Rheumatol. 2011;86:21–5.

    Google Scholar 

  5. Bowcok A, Krueger J. Getting under the skin: the immunogenetics of psoriasis. Nat Rev Immunol. 2005;9:699–711.

    Article  Google Scholar 

  6. Sankowski AJ, Lebkowska UM, Cwikla J, et al. Psoriatic arthritis. Pol J Radiol. 2013;78:7–17.

    PubMed  PubMed Central  Google Scholar 

  7. Moll J, Wright V. Psoriatic arthritis. Sem Arthr Rheum. 1973;1:59–78.

    Google Scholar 

  8. Morales-Zambrano RA, Bautista-Herrera LA, De la Cruz-Mosso U, et al. Macrophage migration inhibitory factor (MIF) promoter polymorphisms (− 794 CATT5-8 and − 173 G > C) association with MIF and TNFα in psoratic arthritis. Int J Clin Exp Med. 2014;7(9):2605–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3:791–800.

    Article  CAS  PubMed  Google Scholar 

  10. Llamas Covarrubias MA, Valle Y, Navarro Hernández RE, et al. Serum levels of macrophage migration inhibitory factor are associated with rheumatoid arthritis course. Rheumatol Int. 2012;32:2307–11.

    Article  CAS  PubMed  Google Scholar 

  11. Xue H, Yang Y, Zhang Y, et al. Macrophage migration inhibitory factor interacting with Th17 cells may be involved in the pathogenesis of autoimmune damage in Hashimoto´s Tiroiditis. Med Inflamm. 2015. doi:10.1155/2015/621072.

    Google Scholar 

  12. De la Cruz Mosso U, Bucala R, Palafox-Sánchez CA, et al. Macrophage migration inhibitory factor: association of − 794 CATT5-8 and − 173 G > C polymorphisms with TNF-α in systemic lupus erythematosus. Hum Immunol. 2014;75(5):433–9.

    Article  Google Scholar 

  13. Shimizu T. Role of macrophage migration inhibitory factor (MIF) in the skin. J Dermatol. 2005;37(2):65–73.

    CAS  Google Scholar 

  14. Stojanovic I, Cvjeticanin T, Lazaroski S, et al. Macrophage migration inhibitory factor stimulates interleukin-17 expression and production in lymph node cells. Immunology. 2009;126(1):74–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Das R, Moss JE, Robinson E, et al. Role of macrophage migration inhibitory factor in the Th2 immune response to epicutaneous sensitization. J Clin Immunol. 2011;31(4):666–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taylor W, Gladman DD, Helliwel P, et al. Classification criteria for psotiatic arthritis: development a new criteria from a large international study. Arthritis Rheum. 2006;54:2665–73.

    Article  PubMed  Google Scholar 

  17. Belmonte-Serrano MA. Is the DAS28 the most adequate method to estimated activity in rheumatoid arthritis clinic considerations and simulations scenarios. Rheumatol Clin. 2008;4:183–90.

    Google Scholar 

  18. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.

    Article  CAS  PubMed  Google Scholar 

  19. Livak KJ, Shmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2 − DDCT method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  20. Michalak SA, Pietrzak A, Szpietowsky CJ, et al. Cytokine network in psoriasis revisited. Eur Cytokine Netw. 2011;22(4):160–8.

    Google Scholar 

  21. Diani M, Altomare G, Reali E. T cell responses in psoriasis and psoriatic arthritis. Autoimmune Rev. 2015;14(4):2686–92.

    Article  Google Scholar 

  22. Gang X, Wei H. Expression levels of IL–17 and TNF–α in degenerated lumbar intervertebral discs and their correlation. Exp Ther Med. 2016;11(6):2333–40.

    Article  Google Scholar 

  23. Gabr MA, Jing L, Sinclair SM. Interleukin-17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells. J Orthop Res. 2011;29(1):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zaba LC, Cardinale I, Suárez Fariñas M, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204(13):3183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raychaduri SP. Role of IL-17 in psoriasis and psoriatic arthritis. Clin Rev Allergy Immunol. 2013;2:183–93.

    Article  Google Scholar 

  26. Mitra A, Raychaudhuri SK, Raychaudhuri SP. Functional role of IL-22 in psoriatic arthritis. Arthritis Res Ther. 2012;14(2):R65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eyerich K, Dimartino V, Cavani A, et al. IL-17 and IL-22 in immunity: driving protection and pathology. Eur J Immunol. 2017;47(4):607–14.

    Article  CAS  PubMed  Google Scholar 

  28. Mosmann TR, Coffman RL. Two types of murine T helper clones. Definition according to profiles of limphokine activities. J Immunol. 1986;136(7):2348–57.

    CAS  PubMed  Google Scholar 

  29. Pasparakis M, Haase I, Nestle F. Mechanism regulating skin immunity and inflammation. Nature. 2014;14:289–301.

    CAS  Google Scholar 

  30. Hernandez-Bello J, Orego RE, Vazque VM. Aberrant expression of interleukin-10 in rheumatoid arthritis: relationship with IL10 haplotypes and autoantibodies. Cytokine. 2017;95:88–96.

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi M, Yanava K, Umezawa Y, et al. IL-10 producing regulatory B cells are decreased in patient with psoriasis. J Dermatol. 2016;81(2):93–100.

    CAS  Google Scholar 

  32. Wang YN, Zhang Y, Zhu Xian, et al. The beneficial effect of total glucosides of paeony of psoriathic arthritis links to circulating Tregs and Th1 Cell functions. Phyther Res. 2014;28:372–81.

    Article  CAS  Google Scholar 

  33. Dolcino M, Ottria A, Barbieri A. Gene expression profiling in peripheral blood cells and synovial membranes of patients with psoriatic arthritis. PLoS One. 2015;10(6):e0128262.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gais P, Tiedje C, Altmayr F, et al. TRIF Signaling stimulates translation of TNF-a mRNA via prolonged activation of MK2. J Immunol. 2010;184:5842–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sullivan KE, Reddy ABM, Dietzmann K. Epigenetic regulation of tumor necrosis factor alpha. Mol Cel Biol. 2007;14:5147–60.

    Article  Google Scholar 

  36. Steinhoff M, Meinhardt A, Steinhoff A. Evidence for a role of macrophage migration inhibitory factor in psoriatic skin disease. Br J Dermatol. 1999;141:1061–6.

    Article  CAS  PubMed  Google Scholar 

  37. Matia García I, Salgado Goytia L, Muñoz Valle JF, et al. Macrophage migration inhibitory factor promoter polymorphisms (− 794 catt5–8 a − 173 g > c): relationship with mRNA expression and soluble mif levels in young obese subjects. Dis Mark. 2015. doi:10.1155/2015/461208.

    Google Scholar 

  38. Meyer Siegler K. Increased stability of macrophage migration inhibitory factor (MIF) in DU-145 prostate cancer cells. J Interferon Cytokine Res. 2000;20:769–78.

    Article  Google Scholar 

  39. Onodera S, Hiroshi T, Kouji S, et al. High expression of macrophage migration inhibitory factor in the synovial tissues of rheumatoid joints. Cytokine. 2015;1:052–6.

    Google Scholar 

  40. Kingsley Gh, Kowalzyc A, Taylor H, et al. A randomized placebo-controlled trial of methotrexate in psoriatic arthritis. Rheumatology (Oxford). 2012;51(8):1368–77.

    Article  CAS  Google Scholar 

  41. Roussou E, Bouraoui A. Real-life experience of using conventional disease-modifying anti-rheumatic drugs (DMARDs) in psoriatic arthritis (PsA). Retrospective analysis of the efficacy of methotrexate, sulfasalazine, and leflunomide in PsA in comparison to spondyloarthritides other than PsA and literature review of the use of conventional DMARDs in PsA. Eur J Rheumatol. 2017;4(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brennan-Bourdon LM, De la Cruz-Mosso U, Reyes-Castillo Z, et al. MIF and TNFa serum levels in rheumatoid arthritis patients treated with disease-modifying antirheumatic drugs: a cross-sectional study. Immunopharmacol Immunotoxicol. 2015;37(2):207–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Muñoz-Valle.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest related to this study.

Ethical approval

This study was conducted conforming to the Declaration of Helsinki, and the research was approved by the ethical, investigation, and biosecurity committee of the Centro Universitario de Ciencias de la Salud (C.I. 084/2012).

Informed consent

Informed consent was obtained from each participant before recruitment in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bautista-Herrera, L.A., De la Cruz-Mosso, U., Morales-Zambrano, R. et al. Expression of MIF and TNFA in psoriatic arthritis: relationship with Th1/Th2/Th17 cytokine profiles and clinical variables. Clin Exp Med 18, 229–235 (2018). https://doi.org/10.1007/s10238-017-0475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-017-0475-0

Keywords

Navigation