Skip to main content

Advertisement

Log in

Peripheral Treg Levels and Transforming Growth Factor-β (TGFβ) in Patients with Psoriatic Arthritis: A Systematic Review Meta-Analysis

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Introduction

Studies on the level of regulatory T (Treg) cells in psoriatic arthritis (PsA) have been controversial, leading to disagreement regarding the role Treg cells play in the pathogenesis of the disease. To clarify the status of Treg cells in patients with PsA, we performed a meta-analysis to determine the levels of Treg cells and serum Treg-associated cytokines in PsA patients.

Methods

According to published data from PubMed, Web of Science, Embase, Clinical Trials.gov, MEDLINE, Web of Knowledge, Cochrane Library, and FDA.gov, we determined the Treg and Treg cytokine levels in patients with PsA. The effect estimates were pooled using a random-effects model.

Results

This meta-analysis included 12 studies. Compared to healthy controls (HCs), the proportions of Treg cells had no significant difference in patients with PsA (based on standardized means[SMD] = − 1.038, 95% confidence intervals[CI] =  − 2.165 to 0.089, p = 0.071). On the basis of subgroup analysis, patients with PsA had a lower percentage of CD4+ Treg cells (SMD = − 1.501, 95% CI − 2.799 to − 0.202, p = 0.023) than OKT8+ Treg (SMD = 0.568, 95% CI − 2.127 to 3.263, p = 0.679). Besides, CD4+CD25+FoxP3+ Treg cells and CD4+CD25highCD127low Treg cells were both significantly decreased on the levels of PBMCs in patients with PsA (SMD = − 0.764, 95% CI − 1.404 to − 0.125, p = 0.019; SMD = − 5.184, 95% CI − 6.955 to − 3.412, p < 0.001). CD4+CD25+FoxP3+ Treg cells were particularly more abundant in the synovial fluid thanin peripheral blood (SMD = 3.288, 95% CI 2.127 to 4.449, p < 0.001). No significant difference was observed in the proportion of CD4+CD25+ Treg cells in peripheral blood and CD4+CD25+FoxP3+ Treg cells in CD4+ T cells (SMD = − 2.498, 95% CI − 7.720 to 2.725, p = 0.349; SMD = − 0.719, 95% CI − 2.525 to 1.086, p = 0.435). PsA patients had decreased cytokines such as transforming growth factor-β (TGFβ) (SMD = − 2.199, 95% CI − 3.650 to − 0.749, p = 0.003).

Conclusions

Treg definition markers influence the scale of Treg cells in patients with PsA. Pathogenesis of PsA may be attributed to an insufficient or malfunctioning Treg population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coates LC, Orbai AM, Azevedo VF, et al. Results of a global, patient-based survey assessing the impact of psoriatic arthritis discussed in the context of the Psoriatic Arthritis Impact of Disease (PsAID) questionnaire. Health Qual Life Outcomes. 2020;18(1):173.

    Article  CAS  Google Scholar 

  2. Göschl L, Scheinecker C, Bonelli M. Treg cells in autoimmunity: from identification to Treg-based therapies. Semin Immunopathol. 2019;41(3):301–14.

    Article  Google Scholar 

  3. Hu P, Wang M, Gao H, et al. The role of helper T cells in psoriasis. Front Immunol. 2021;12:788940.

    Article  CAS  Google Scholar 

  4. Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996;184(2):387–96.

    Article  CAS  Google Scholar 

  5. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.

    Article  CAS  Google Scholar 

  6. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.

    Article  CAS  Google Scholar 

  7. Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701–11.

    Article  CAS  Google Scholar 

  8. Li M, Zhou X, Zhou L, Yu Z, Fu L, Yang P. Meta-analysis of changes in the number and proportion of regulatory T cells in patients with ankylosing spondylitis. Biomed Res Int. 2020;2020:8709804.

    Google Scholar 

  9. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  Google Scholar 

  10. Zhang SX, Ma XW, Li YF, et al. The proportion of regulatory T cells in patients with systemic lupus erythematosus: a meta-analysis. J Immunol Res. 2018;2018:7103219.

    Article  Google Scholar 

  11. Mingebach T, Kamp-Becker I, Christiansen H, Weber L. Meta-meta-analysis on the effectiveness of parent-based interventions for the treatment of child externalizing behavior problems. PLoS ONE. 2018;13(9):e0202855.

    Article  Google Scholar 

  12. Wells GA, Shea B, O’Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Oxford: Oxford university Press; 2000.

    Google Scholar 

  13. Wang J, Zhang SX, Hao YF, et al. The numbers of peripheral regulatory T cells are reduced in patients with psoriatic arthritis and are restored by low-dose interleukin-2. Ther Adv Chronic Dis. 2020;11:2040622320916014.

    Article  CAS  Google Scholar 

  14. Hao-LangWu J-G. Detection of T helper 17/regulatory T cells and related cytokines in elderly patients with psoriatic arthritis. Chin J Dermatovenerol Integr Tradit Western Med. 2015;14(5):285–6.

    Google Scholar 

  15. Fiocco U, Accordi B, Martini V, et al. JAK/STAT/PKCδ molecular pathways in synovial fluid T lymphocytes reflect the in vivo T helper-17 expansion in psoriatic arthritis. Immunol Res. 2014;58(1):61–9.

    Article  CAS  Google Scholar 

  16. Wen L-Y, Feng D-M, Zhu Y-J. Detection and clinical significance of transforming growth factorβ1 in peripheral blood of patients with psoriatic arthritis. Chin J Diffic Compl Cases. 2014;6:637–8.

    Google Scholar 

  17. Zhang X-Y, Yan-Feng D, Dong H-Y. Expression and mechanism of serum Th17 and Treg cells in patients with psoriatic arthritis. Chin J Gerontol. 2014;22:6374–5.

    Google Scholar 

  18. Wang H. Detection of transforming growth factor-β1 in patients with psoriasis and its clinical significance. Chin J Modern Med. 2012;22(28):55–7.

    Google Scholar 

  19. Chen JG, Jiang Y. Detection of Th17/Treg-related cytokines in patients with psoriatic arthritis. Chin J Dermatovenereol. 2012;26(11):969–76.

    CAS  Google Scholar 

  20. Chen J, Lai W, Jiang Y. Expression of Th17/Treg cell in patients with psoriasis arthritis and its clinical significance. Zhongguo yi xue ke xue Yuan xue bao Acta Academiae Medicinae Sinicae. 2012;34(6):617–20.

    Google Scholar 

  21. Appel H, Wu P, Scheer R, et al. Synovial and peripheral blood CD4+FoxP3+ T cells in spondyloarthritis. J Rheumatol. 2011;38(11):2445–51.

    Article  CAS  Google Scholar 

  22. Zhang C-Q. Different expression and significance of helper T cells 17 and regulatory T cells in patients with ankylosing spondylitis and psoriatic arthritis. Chin Remed Clin. 2019;19(1):34–6.

    Google Scholar 

  23. Jandus C, Bioley G, Rivals JP, Dudler J, Speiser D, Romero P. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum. 2008;58(8):2307–17.

    Article  Google Scholar 

  24. Rubins AY, Merson AG. Subpopulations of T lymphocytes in psoriasis patients and their changes during immunotherapy. J Am Acad Dermatol. 1987;17(6):972–7.

    Article  CAS  Google Scholar 

  25. Keystone EC, Lau C, Gladman DD, Wilkinson S, Lee P, Shore A. Immunoregulatory T cell subpopulations in patients with scleroderma using monoclonal antibodies. Clin Exp Immunol. 1982;48(2):443–8.

    CAS  Google Scholar 

  26. Yin ZJ, Ju BM, Zhu L, et al. Increased CD4(+)CD25(-)Foxp3(+) T cells in Chinese systemic lupus erythematosus: correlate with disease activity and organ involvement. Lupus. 2018;27(13):2057–68.

    Article  CAS  Google Scholar 

  27. Sakaguchi S. Regulatory T cells: history and perspective. Methods Mol Biol. 2011;707:3–17.

    Article  CAS  Google Scholar 

  28. Prabhala RH, Neri P, Bae JE, et al. Dysfunctional T regulatory cells in multiple myeloma. Blood. 2006;107(1):301–4.

    Article  CAS  Google Scholar 

  29. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J Immunol. 2001;167(3):1245–53.

    Article  CAS  Google Scholar 

  30. Aerts NE, Dombrecht EJ, Ebo DG, Bridts CH, Stevens WJ, De Clerck LS. Activated T cells complicate the identification of regulatory T cells in rheumatoid arthritis. Cell Immunol. 2008;251(2):109–15.

    Article  CAS  Google Scholar 

  31. Guo Y, Wu CZ, Liao Y, Zhang QY. The expression and significance of CD4+CD25+CD127low/- regulatory T cells and Foxp3 in patients with portal hypertension and hypersplenism. Hepatogastroenterology. 2013;60(123):581–4.

    CAS  Google Scholar 

  32. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6.

    Article  CAS  Google Scholar 

  33. Whitley NT, Day MJ. Immunomodulatory drugs and their application to the management of canine immune-mediated disease. J Small Anim Pract. 2011;52(2):70–85.

    Article  CAS  Google Scholar 

  34. Li YF, Zhang SX, Ma XW, et al. The proportion of peripheral regulatory T cells in patients with multiple sclerosis: a meta-analysis. Multiple Scler Relat Disord. 2019;28:75–80.

    Article  Google Scholar 

  35. Lai NL, Zhang SX, Wang J, et al. The proportion of regulatory T cells in patients with ankylosing spondylitis: a meta-analysis. J Immunol Res. 2019;2019:1058738.

    Article  Google Scholar 

  36. Yu N, Li X, Song W, et al. CD4(+)CD25 (+)CD127 (low/-) T cells: a more specific Treg population in human peripheral blood. Inflammation. 2012;35(6):1773–80.

    Article  Google Scholar 

  37. Fan Z, Gu C, Wu Y. Changes of peripheral blood Vδ1 T cells in patients with atherosclerotic cerebral infarction. Int J Clin Exp Pathol. 2017;10(8):9052–60.

    Google Scholar 

  38. Fiocco U, Martini V, Accordi B, et al. Transcriptional network profile on synovial fluid T cells in psoriatic arthritis. Clin Rheumatol. 2015;34(9):1571–80.

    Article  Google Scholar 

  39. Eastell T, Hinks A, Thomson W. SNPs in the FOXP3 gene region show no association with juvenile idiopathic arthritis in a UK Caucasian population. Rheumatology (Oxford). 2007;46(8):1263–5.

    Article  CAS  Google Scholar 

  40. Fiocco U, Martini V, Accordi B, et al. Transcriptional network profile on synovial fluid T cells in psoriatic arthritis. Clin Rheumatol. 2015; 34(9):1571-80.

    Article  Google Scholar 

  41. Gao W, McGarry T, Orr C, McCormick J, Veale DJ, Fearon U. Tofacitinib regulates synovial inflammation in psoriatic arthritis, inhibiting STAT activation and induction of negative feedback inhibitors. Ann Rheum Dis. 2016;75(1):311–5.

    Article  CAS  Google Scholar 

  42. Yang XP, Ghoreschi K, Steward-Tharp SM, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12(3):247–54.

    Article  CAS  Google Scholar 

  43. O’Shea JJ, Lahesmaa R, Vahedi G, Laurence A, Kanno Y. Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol. 2011;11(4):239–50.

    Article  CAS  Google Scholar 

  44. Basu R, Whitley SK, Bhaumik S, et al. IL-1 signaling modulates activation of STAT transcription factors to antagonize retinoic acid signaling and control the TH17 cell-iTreg cell balance. Nat Immunol. 2015;16(3):286–95.

    Article  CAS  Google Scholar 

  45. Höfer T, Krichevsky O, Altan-Bonnet G. Competition for IL-2 between regulatory and effector T cells to chisel immune responses. Front Immunol. 2012;3:268.

    Article  Google Scholar 

  46. Passerini L, Allan SE, Battaglia M, Di Nunzio S, et al. STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. Int Immunol. 2008;20(3):421–31.

    Article  CAS  Google Scholar 

  47. Benito-Miguel M, García-Carmona Y, Balsa A, et al. A dual action of rheumatoid arthritis synovial fibroblast IL-15 expression on the equilibrium between CD4+CD25+ regulatory T cells and CD4+CD25- responder T cells. J Immunol. 2009;183(12):8268–79.

    Article  CAS  Google Scholar 

  48. Pandiyan P, Yang XP, Saravanamuthu SS, et al. The role of IL-15 in activating STAT5 and fine-tuning IL-17A production in CD4 T lymphocytes. J Immunol. 2012;189(9):4237–46.

    Article  CAS  Google Scholar 

  49. Du W, Chen T, Ni Y, et al. Role of PIM2 in allergic asthma. Mol Med Rep. 2017;16(5):7504–12.

    Article  CAS  Google Scholar 

  50. Ourives SS, Borges QI, Dos Santos DSA, Melo ECM, de Souza RM, Damazo AS. Analysis of the lymphocyte cell population during malaria caused by Plasmodium vivax and its correlation with parasitaemia and thrombocytopaenia. Malar J. 2018;17(1):303.

    Article  Google Scholar 

  51. Ahmed BT, Saeed MY, Noori SH, Amin DM. TGF-β1 gene polymorphism and its correlation with serum level of TGF-β1 in psoriasis vulgaris among Iraqi people. Clin Cosmet Investig Dermatol. 2020;13:889–96.

    Article  Google Scholar 

Download references

Acknowledgements

Funding

This work was supported by the National Natural Science Foundation of China (No. 82001740), Natural Science Research Project of Shanxi Province (No. 20210302123281) and Doctoral Fund of the Second Hospital of Shanxi Medical University(No. 202001-4). The journal’s Rapid Service Fee was funded by the authors.

Author Contributions

QYS designed the study. LY and JL selected the data. QYS and LY analyzed the data. QYS, XFL and SXZ wrote the manuscript. JQL, JQZ, YZ and LS contributed to manuscript revision, and read and approved the submitted version.

Prior Presentation

An earlier version of this study was presented as a poster in the 23rd Asia‐Pacific League of Associations for Rheumatology (https://onlinelibrary.wiley.com/doi/10.1111/1756-185X).

Disclosures

Qin-Yi Su, Sheng-Xiao Zhang, Liu Yang, Jing Luo, Xiao-Feng Li, Jia-Qi Zhang, Yan Zhang, Jun-Qi Liu and Lei Shi have nothing to disclose.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Data Availability

All data relevant to the study are included in the article or uploaded as online supplementary material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 269 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, QY., Zhang, SX., Yang, L. et al. Peripheral Treg Levels and Transforming Growth Factor-β (TGFβ) in Patients with Psoriatic Arthritis: A Systematic Review Meta-Analysis. Adv Ther 40, 102–116 (2023). https://doi.org/10.1007/s12325-022-02337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-022-02337-5

Keywords

Navigation