Skip to main content
Log in

Lenalidomide potentiates CD4+CD25+Treg-related suppression of lymphoma B-cell proliferation

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

We have previously found that ex vivo expanded human CD4+CD25+Treg cells suppress proliferation of lymphoma B-cell lines. Here we demonstrate that the immunomodulatory drug lenalidomide potentiates suppression of lymphoma B-cell proliferation by freshly isolated CD4+CD25+Tregs, as well as suppression by Tregs expanded polyclonally in the presence of rapamycin from CD4+CD25+T cells or CD4+CD25+CD127loT cells. The regulation of lymphoma cell proliferation by Tregs pre-expanded with “third-party” allogeneic MoDCs in the presence of rapamycin was also potentiated by lenalidomide. Lenalidomide contributed to the suppression exerted by Tregs despite concomitant downregulation of Treg proliferation. Lenalidomide did not reduce the suppression of conventional T cells by expanded Tregs. The exposure of polyclonally expanded Tregs to lenalidomide did not significantly alter their phenotype. There was no uniform pattern of lenalidomide effect on Treg-mediated regulation of lymphoma B cells freshly isolated from patients. Freshly isolated lymphoma cells activated with multimeric CD40L and IL-4 to support their survival in vitro varied in their sensitivity to lenalidomide, and the regulatory effect of Tregs on such lymphoma cells ranged from suppression to help in individual patients. Lenalidomide potentiated or attenuated Treg effects on the survival of freshly isolated lymphoma cells. A combination of lenalidomide treatment with adoptive transfer of CD4+CD25+Tregs or CD4+CD25+CD127loTregs expanded ex vivo could be used to suppress proliferation of residual lymphoma in select patients with lymphoma responsive to the regulation by Tregs and sensitive to lenalidomide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lentzsch S, LeBlanc R, Podar K, et al. Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia. 2003;17(1):41–4.

    Article  CAS  PubMed  Google Scholar 

  2. Desai M, Newberry K, Ou Z, Wang M, Zhang L. Lenalidomide in relapsed or refractory mantle cell lymphoma: overview and perspective. Ther Adv Hematol. 2014;5(3):91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chanan-Khan AA, Cheson BD. Lenalidomide for the treatment of B-cell malignancies. J Clin Oncol. 2008;26(9):1544–52.

    Article  CAS  PubMed  Google Scholar 

  4. Carballido E, Veliz M, Komrokji R, Pinilla-Ibarz J. Immunomodulatory drugs and active immunotherapy for chronic lymphocytic leukemia. Cancer Control. 2012;19(1):54–67.

    PubMed  Google Scholar 

  5. Saloura V, Grivas PD. Lenalidomide: a synthetic compound with an evolving role in cancer management. Hematology. 2010;15(5):318–31.

    Article  CAS  PubMed  Google Scholar 

  6. Haslett PA, Hanekom WA, Muller G, Kaplan G. Thalidomide and a thalidomide analogue drug costimulate virus-specific CD8+T cells in vitro. J Infect Dis. 2003;187(6):946–55.

    Article  CAS  PubMed  Google Scholar 

  7. Gorgun G, Calabrese E, Soydan E, et al. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood. 2010;116(17):3227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marriott JB, Clarke IA, Dredge K, Muller G, Stirling D, Dalgleish AG. Thalidomide and its analogues have distinct and opposing effects on TNF-alpha and TNFR2 during co-stimulation of both CD4(+) and CD8(+) T cells. Clin Exp Immunol. 2002;130(1):75–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schafer PH, Gandhi AK, Loveland MA, et al. Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs. J Pharmacol Exp Ther. 2003;305(3):1222–32.

    Article  CAS  PubMed  Google Scholar 

  10. Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5.

    Article  PubMed  Google Scholar 

  11. Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol. 2014;164(6):811–21.

    Article  CAS  PubMed  Google Scholar 

  12. Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramsay AG, Clear AJ, Kelly G, et al. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood. 2009;114(21):4713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramsay AG, Evans R, Kiaii S, Svensson L, Hogg N, Gribben JG. Chronic lymphocytic leukemia cells induce defective LFA-1-directed T-cell motility by altering Rho GTPase signaling that is reversible with lenalidomide. Blood. 2013;121(14):2704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Galustian C, Meyer B, Labarthe MC, et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother. 2009;58(7):1033–45.

    Article  CAS  PubMed  Google Scholar 

  18. De Keersmaecker B, Fostier K, Corthals J, et al. Immunomodulatory drugs improve the immune environment for dendritic cell-based immunotherapy in multiple myeloma patients after autologous stem cell transplantation. Cancer Immunol Immunother. 2014;63(10):1023–36.

    Article  PubMed  Google Scholar 

  19. Idler I, Giannopoulos K, Zenz T, et al. Lenalidomide treatment of chronic lymphocytic leukaemia patients reduces regulatory T cells and induces Th17 T helper cells. Br J Haematol. 2010;148(6):948–50.

    Article  CAS  PubMed  Google Scholar 

  20. Lee BN, Gao H, Cohen EN, et al. Treatment with lenalidomide modulates T-cell immunophenotype and cytokine production in patients with chronic lymphocytic leukemia. Cancer. 2011;117(17):3999–4008.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Minnema MC, van der Veer MS, Aarts T, Emmelot M, Mutis T, Lokhorst HM. Lenalidomide alone or in combination with dexamethasone is highly effective in patients with relapsed multiple myeloma following allogeneic stem cell transplantation and increases the frequency of CD4+Foxp3+T cells. Leukemia. 2009;23(3):605–7.

    Article  CAS  PubMed  Google Scholar 

  22. Kneppers E, van der Holt B, Kersten MJ, et al. Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: results of the HOVON 76 Trial. Blood. 2011;118(9):2413–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lioznov M, El-Cheikh J Jr, Hoffmann F, et al. Lenalidomide as salvage therapy after allo-SCT for multiple myeloma is effective and leads to an increase of activated NK (NKp44(+)) and T (HLA-DR(+)) cells. Bone Marrow Transplant. 2010;45(2):349–53.

    Article  CAS  PubMed  Google Scholar 

  24. Busch A, Zeh D, Janzen V, et al. Treatment with lenalidomide induces immunoactivating and counter-regulatory immunosuppressive changes in myeloma patients. Clin Exp Immunol. 2014;177(2):439–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muthu-Raja KR, Kovarova L, Hajek R. Induction by lenalidomide and dexamethasone combination increases regulatory cells of patients with previously untreated multiple myeloma. Leuk Lymphoma. 2012;53(7):1406–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lee NR, Song EK, Jang KY, et al. Prognostic impact of tumor infiltrating FOXP3 positive regulatory T cells in diffuse large B-cell lymphoma at diagnosis. Leuk Lymphoma. 2008;49(2):247–56.

    Article  CAS  PubMed  Google Scholar 

  27. Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA, Dirnhofer S. Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica. 2008;93(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  28. Wahlin BE, Aggarwal M, Montes-Moreno S, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1–positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16(2):637–50.

    Article  CAS  PubMed  Google Scholar 

  29. Carreras J, Lopez-Guillermo A, Fox BC, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood. 2006;108(9):2957–64.

    Article  CAS  PubMed  Google Scholar 

  30. Alvaro T, Lejeune M, Salvado MT, et al. Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res. 2005;11(4):1467–73.

    Article  PubMed  Google Scholar 

  31. Kelley TW, Pohlman B, Elson P, Hsi ED. The ratio of FOXP3+ regulatory T cells to granzyme B+ cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression. Am J Clin Pathol. 2007;128(6):958–65.

    Article  PubMed  Google Scholar 

  32. Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, Gascoyne RD. The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood. 2010;115(2):289–95.

    Article  CAS  PubMed  Google Scholar 

  33. Glowala-Kosinska M, Chwieduk A, Nieckula J, et al. Association of circulating regulatory T cell number with the incidence and prognosis of diffuse large B-cell lymphoma. Eur J Haematol. 2013;91(2):122–8.

    Article  CAS  PubMed  Google Scholar 

  34. Giannopoulos K, Schmitt M, Kowal M, et al. Characterization of regulatory T cells in patients with B-cell chronic lymphocytic leukemia. Oncol Rep. 2008;20(3):677–82.

    PubMed  Google Scholar 

  35. Giannopoulos K, Kaminska W, Hus I, Dmoszynska A. The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma. Br J Cancer. 2012;106(3):546–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindqvist CA, Christiansson LH, Thorn I, et al. Both CD4+ FoxP3+ and CD4+ FoxP3- T cells from patients with B-cell malignancy express cytolytic markers and kill autologous leukaemic B cells in vitro. Immunology. 2011;133(3):296–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grygorowicz MA, Biernacka M, Bujko M, et al. Human regulatory T cells suppress proliferation of B lymphoma cells. Leuk Lymphoma. 2016;. doi:10.3109/10428194.2015.1121260.

    PubMed  Google Scholar 

  38. Blum W, Klisovic RB, Becker H, et al. Dose escalation of lenalidomide in relapsed or refractory acute leukemias. J Clin Oncol. 2010;28(33):4919–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andersen NS, Larsen JK, Christiansen J, et al. Soluble CD40 ligand induces selective proliferation of lymphoma cells in primary mantle cell lymphoma cell cultures. Blood. 2000;96(6):2219–25.

    CAS  PubMed  Google Scholar 

  40. Neelapu SS, Baskar S, Gause BL, et al. Human autologous tumor-specific T-cell responses induced by liposomal delivery of a lymphoma antigen. Clin Cancer Res. 2004;10(24):8309–17.

    Article  CAS  PubMed  Google Scholar 

  41. Woroniecka R, Rymkiewicz G, Grygalewicz B, et al. Cytogenetic and flow cytometry evaluation of Richter syndrome reveals MYC, CDKN2A, IGH alterations with loss of CD52, CD62L and increase of CD71 antigen expression as the most frequent recurrent abnormalities. Am J Clin Pathol. 2015;143(1):25–35.

    Article  PubMed  Google Scholar 

  42. Luptakova K, Rosenblatt J, Glotzbecker B, et al. Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunol Immunother. 2013;62(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang LH, Kosek J, Wang M, Heise C, Schafer PH, Chopra R. Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma is dependent upon IRF4 and cereblon expression. Br J Haematol. 2013;160(4):487–502.

    Article  CAS  PubMed  Google Scholar 

  44. Lopez-Girona A, Heintel D, Zhang LH, et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Haematol. 2011;154(3):325–36.

    Article  CAS  PubMed  Google Scholar 

  45. Raffin C, Pignon P, Celse C, Debien E, Valmori D, Ayyoub M. Human memory Helios- FOXP3+ regulatory T cells (Tregs) encompass induced Tregs that express Aiolos and respond to IL-1beta by downregulating their suppressor functions. J Immunol. 2013;191(9):4619–27.

    Article  CAS  PubMed  Google Scholar 

  46. Gandhi R, Kumar D, Burns EJ, et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat Immunol. 2010;11(9):846–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cretney E, Xin A, Shi W, et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol. 2011;12(4):304–11.

    Article  CAS  PubMed  Google Scholar 

  48. Yao Z, Kanno Y, Kerenyi M, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood. 2007;109(10):4368–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cohen AC, Nadeau KC, Tu W, et al. Cutting edge: decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J Immunol. 2006;177(5):2770–4.

    Article  CAS  PubMed  Google Scholar 

  50. Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seddiki N, Santner-Nanan B, Martinson J, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203(7):1693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Myklebust JH, Irish JM, Brody J, et al. High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood. 2013;121(8):1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol. 2015;15(5):283–94.

    Article  CAS  PubMed  Google Scholar 

  54. Helling B, Konig M, Dalken B, et al. A specific CD4 epitope bound by tregalizumab mediates activation of regulatory T cells by a unique signaling pathway. Immunol Cell Biol. 2015;93(4):396–405.

    Article  CAS  PubMed  Google Scholar 

  55. Di Ianni M, Falzetti F, Carotti A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8.

    Article  PubMed  Google Scholar 

  56. Trzonkowski P, Bieniaszewska M, Juscinska J, et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+ CD25+ CD127- T regulatory cells. Clin Immunol. 2009;133(1):22–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Contribution: M.A.G. designed and performed experiments, analyzed data, made the figures, and cowrote the manuscript; I.S.B. and E.N. performed experiments, analyzed data, and made the figures; G.R. and E.P.-K. provided patient samples, analyzed data, and cowrote the manuscript; K.B. analyzed patient samples; M. Biernacka designed and performed experiments; M. Bujko performed experiments, analyzed data, and cowrote the manuscript, J.W. designed and supervised the study, and cowrote the manuscript; S.M designed and supervised the study, analyzed data, and cowrote the manuscript. This work was supported by a grant from National Science Centre, Poland (N N402 454739), for S.M.

Funding

This work was supported by a grant from National Science Centre, Poland (N N402 454739), for S.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiusz Markowicz.

Ethics declarations

Conflict of interest

JW.: Roche, Takeda, Mundipharma, Celgene, Teva, Gilead, Sanofi—lecture honoraria, Roche, Takeda, Janssen-Cilag, Teva, Boehringer Ingelheim, Celgene, Mundipharma, Karyopharm, Ariad—consulting/advisory role, Roche, Mundipharma, Celgene, GSK/Novartis—research funding, Roche, Celgene, Takeda, Seattle Genetics, Sanofi—travel/accommodation expenses; E.P.-K: Roche—lecture honoraria, advisory role, travel/accommodation expenses, Sandoz—lecture honoraria; M.A.G., M.Biernacka, M.Bujko, E.N., G.R., I.S.B., Z.B. and S.M. declared no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional review board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grygorowicz, M.A., Borycka, I.S., Nowak, E. et al. Lenalidomide potentiates CD4+CD25+Treg-related suppression of lymphoma B-cell proliferation. Clin Exp Med 17, 193–207 (2017). https://doi.org/10.1007/s10238-016-0411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-016-0411-8

Keywords

Navigation