Skip to main content

Advertisement

Log in

Wnt/beta-Catenin pathway in human glioma: expression pattern and clinical/prognostic correlations

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Gliomas are the most common primary intracranial tumors. Understanding the molecular basis of gliomas’ progression is required to develop more effective therapies. The Wnt/β-catenin signaling cascade is an important signal transduction pathway in human cancers. Although, overactivation of this pathway is a hallmark of several forms of cancer, little is known about its role in human gliomas. Here, we aimed to determine the clinical significance of Wnt/β-catenin pathway components in gliomas. Immunohistochemical staining was performed to detect the expression patterns of Wnt1, β-catenin and Cyclin D1 in the biopsies from 96 patients with primary gliomas. Kaplan–Meier survival and Cox regression analyses were performed to evaluate the prognosis of patients. Cytoplasmic staining pattern of Wnt1, membranous, cytoplasmic and nuclear accumulation of β-catenin, and nuclear localization of Cyclin D1 were demonstrated by immunohistochemical staining. The Wnt1 expression significantly correlated with the expression of Cyclin D1 (P < 0.0001). The ratio of tumors with a cytoplasmic–nuclear pattern or a cytoplasmic pattern of β-catenin was significantly higher in Wnt1-positive (P < 0.01) and Cyclin D1-positive (P < 0.01) tumors than in Wnt1-negative and Cyclin D1-negative tumors, respectively. The protein expression levels of Wnt1, β-catenin and Cyclin D1 were all positively correlated with the Karnofsky performance scale (KPS) score and World Health Organization (WHO) grades of patients with gliomas. Furthermore, Wnt1, cytoplasmic–nuclear β-catenin and Cyclin D1 status were all the independent prognostic factors for glioma patients (P = 0.01, 0.007 and 0.005, respectively). These results provide convincing evidence that the Wnt/β-catenin pathway correlated closely with the progression of gliomas and might be a novel prognostic marker for this neoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Felsberg J, Rapp M, Loeser S, Fimmers R, Stummer W, Goeppert M, Steiger HJ, Friedensdorf B, Reifenberger G, Sabel MC (2009) Prognostic significance of molecular markers and extent of resection in primary glioblastoma patients. Clin Cancer Res 15:6683–6693

    Article  PubMed  CAS  Google Scholar 

  2. Umesh S, Tandon A, Santosh V, Anandh B, Sampath S, Chandramouli BA, Sastry Kolluri VR (2009) Clinical and immunohistochemical prognostic factors in adult glioblastoma patients. Clin Neuropathol 28:362–372

    PubMed  CAS  Google Scholar 

  3. Staflin K, Zuchner T, Honeth G, Darabi A, Lundberg C (2009) Identification of proteins involved in neural progenitor cell targeting of gliomas. BMC Cancer 9:206

    Article  PubMed  Google Scholar 

  4. Lustig B, Behrens J (2003) The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 129:199–221

    PubMed  CAS  Google Scholar 

  5. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    PubMed  CAS  Google Scholar 

  6. Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through beta-catenin. Science 296:1644–1646

    Article  PubMed  CAS  Google Scholar 

  7. Kurihara T, Ikeda S, Ishizaki Y, Fujimori M, Tokumoto N, Hirata Y, Ozaki S, Okajima M, Sugino K, Asahara T (2004) Immunohistochemical and sequencing analyses of the Wnt signaling components in Japanese anaplastic thyroid cancers. Thyroid 14:1020–1029

    Article  PubMed  CAS  Google Scholar 

  8. Ozaki S, Ikeda S, Ishizaki Y, Kurihara T, Tokumoto N, Iseki M, Arihiro K, Kataoka T, Okajima M, Asahara T (2005) Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncol Rep 14:1437–1443

    PubMed  CAS  Google Scholar 

  9. Liu X, Mazanek P, Dam V, Wang Q, Zhao H, Guo R, Jagannathan J, Cnaan A, Maris JM, Hogarty MD (2008) Deregulated Wnt/beta-catenin program in high-risk neuroblastomas without MYCN amplification. Oncogene 27:1478–1488

    Article  PubMed  CAS  Google Scholar 

  10. Boon EM, Keller JJ, Wormhoudt TA, Giardiello FM, Offerhaus GJ, van der Neut R, Pals ST (2004) Sulindac targets nuclear beta-catenin accumulation and Wnt signaling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer 90:224–229

    Article  PubMed  CAS  Google Scholar 

  11. Kudo J, Nishiwaki T, Haruki N, Ishiguro H, Shibata Y, Terashita Y, Sugiura H, Shinoda N, Kimura M, Kuwabara Y, Fujii Y (2007) Aberrant nuclear localization of beta-catenin without genetic alterations in beta-catenin or Axin genes in esophageal cancer. World J Surg Oncol 5:21

    Article  PubMed  Google Scholar 

  12. Kotsinas A, Evangelou K, Zacharatos P, Kittas C, Gorgoulis VG (2002) Proliferation, but not apoptosis, is associated with distinct beta-catenin expression patterns in non-small-cell lung carcinomas. Am J Pathol 161:1619–1634

    Article  PubMed  CAS  Google Scholar 

  13. Zhou CX, Gao Y (2006) Aberrant expression of beta-catenin, Pin1 and cylin D1 in salivary adenoid cystic carcinoma: relation to tumor proliferation and metastasis. Oncol Rep 16:505–511

    PubMed  CAS  Google Scholar 

  14. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the Wnt signalling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 17:1371–1384

    Article  PubMed  CAS  Google Scholar 

  15. Bravou V, Klironomos G, Papadaki E, Taraviras S, Varakis J (2006) ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. J Pathol 208:91–99

    Article  PubMed  CAS  Google Scholar 

  16. You Z, Saims D, Chen S et al (2002) Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. J Cell Biol 157:429–440

    Article  PubMed  CAS  Google Scholar 

  17. Mizushima T, Nakagawa H, Kamberov YG, Wilder EL, Klein PS, Rustgi AK (2002) Wnt-1 but not epidermal growth factor induces beta-catenin/T-cell factor-dependent transcription in esophageal cancer cells. Cancer Res 62:277–282

    PubMed  CAS  Google Scholar 

  18. Huang CL, Liu D, Ishikawa S, Nakashima T, Nakashima N, Yokomise H, Kadota K, Ueno M (2008) Wnt1 overexpression promotes tumour progression in non-small cell lung cancer. Eur J Cancer 44:2680–2688

    Article  PubMed  CAS  Google Scholar 

  19. Chen G, Shukeir N, Potti A et al (2004) Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101:1345–1356

    Article  PubMed  CAS  Google Scholar 

  20. Zhang WM, Lo Muzio L, Rubini C, Yan G (2005) Effect of WNT-1 on beta-catenin expression and its relation to Ki-67 and tumor differentiation in oral squamous cell carcinoma. Oncol Rep 13:1095–1099

    PubMed  CAS  Google Scholar 

  21. Lin SY, Xia W, Wang JC et al (2000) Beta-catenin, a novel prognostic marker for breast cancer:its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA 97:4262–4266

    Article  PubMed  CAS  Google Scholar 

  22. Frierson HF Jr, El-Naggar AK, Welsh JB et al (2002) Large scale molecular analysis identifies genes with altered expression in salivary adenoid cystic carcinoma. Am J Pathol 161:1315–1323

    Article  PubMed  CAS  Google Scholar 

  23. Sareddy GR, Panigrahi M, Challa S, Mahadevan A, Babu PP (2009) Activation of Wnt/beta-catenin/Tcf signaling pathway in human astrocytomas. Neurochem Int 55:307–317

    Article  PubMed  CAS  Google Scholar 

  24. Zhang ZQ, Chen HQ, Chen YH, Cheng XF (2009) Significance of beta-catenin and Cyclin D1 express in glioma. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 25:1010–1012

    PubMed  CAS  Google Scholar 

  25. Liu X, Wang L, Zhao S, Ji X, Luo Y, Ling F (2010) beta-Catenin overexpression in malignant glioma and its role in proliferation and apoptosis in glioblastma cells. Med Oncol [Epub ahead of print]

  26. Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H (2009) Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther 16:351–361

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Social Development Foundation of Jiangsu, China (No. BS2007037), Medicine, Jiangsu Province Key Talent Foundation (No. RC2007029) and the Science and Technology Development Foundation of Huaian, China (No. HAS07025).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianshu Ding.

Additional information

Ce Liu, Yanyang Tu and Xiaoyang Sun equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Tu, Y., Sun, X. et al. Wnt/beta-Catenin pathway in human glioma: expression pattern and clinical/prognostic correlations. Clin Exp Med 11, 105–112 (2011). https://doi.org/10.1007/s10238-010-0110-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-010-0110-9

Keywords

Navigation